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Abstract

Many (2D) Dynamic Geometry Systems (DGSs) are able to export numeric coordi-
nates and equations with numeric coefficients to Computer Algebra Systems (CASs).
Moreover, different approaches and systems that link (2D) DGSs with CASs, so
that symbolic coordinates and equations with symbolic coefficients can be exported
from the DGS to the CAS, already exist. Although the 3D DGS Calques3D can
export numeric coordinates and equations with numeric coefficients to Maple and
Mathematica, it cannot export symbolic coordinates and equations with symbolic
coefficients. A connection between the 3D DGS Calques3D and the CAS Maple, that
can handle symbolic coordinates and equations with symbolic coefficients, is pre-
sented here. Its main interest is to provide a convenient time-saving way to explore
problems and directly obtain both algebraic and numeric data when dealing with a
3D extension of “ruler and compass geometry”. This link has not only educational
purposes but mathematical ones, like mechanical theorem proving in geometry, ge-
ometric discovery (hypotheses completion), geometric loci finding... As far as we
know, there is no comparable “symbolic” link in the 3D case, except the prototype
3D-LD (restricted to determining algebraic surfaces as geometric loci).
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1 Introduction: CASs and DGSs

The first Computer Algebra Systems (CASs), Macsyma and Reduce, were de-
signed in the sixties to cope with the symbolic problems of Astronomy and
High Energy Physics. CASs are distinguished for using exact arithmetic (in-
stead of the built-in floating point arithmetic) and for handling non-assigned
variables (i.e., variables in the mathematical sense, not in the usual sense in
Computer Science). Many extensions like symbolic differentiation and integra-
tion, linear and non-linear equation and polynomial system solving, 2D and
3D plotting... are usually included too.

Let us detail what “handling non-assigned variables” means.

Example 1 Any computer language can compute (x + y)2 + (x− y)2 for any
given values of x and y. But when we ask our students to try to obtain a sim-
pler expression for that polynomial, we are expecting them to perform symbolic
computations involving “x” and “y”, without assigning values to these vari-
ables. After expanding and cancelling, 4 · x · y should be reached. CASs can
also handle such operations, whereas the typical computer languages cannot.

Example 2 An almost standard programming exercise is to write a program
that, given f(x) and n ∈ Z (n > 0), approximates

∫ a
b f(x) dx by dividing

interval (a, b) in n intervals (there are different well-known methods). Mean-
while, a CASs can find (for most functions)

∫
f(x) dx, i.e., the antiderivative

of f(x).

This way CASs can treat problems of a higher degree of abstraction than usual
computer languages.

The best known CASs are probably Mathematica [45,50], Maple [12,16,25,37,51],
Derive [20,22,30] (recently discontinued) [52], Reduce [24,26,53], Axiom [17,54],
MuPad [55] and Maxima (a descendant of the discontinued Macsyma) [56].
There are some specific purpose ones, like CoCoA [57] and Singular [58].

Dynamic Geometry Systems (DGSs) are interactive systems that allow to
draw “ruler and compass” geometric constructions using only the mouse, and
to deform the construction by dragging and dropping the points that do not
depend on previously defined objects. The best-known 2D DGSs are proba-
bly Cabri Geometry [59], The Geometer’s Sketchpad [60], Cinderella [19,61]
and GeoGebra [14,62], although many other exist. They are great tools for
exploring classic geometry.

Both Computer Algebra Systems (CASs) and 2D DGSs have reached a high
level of development. And even some 3D DGSs like Cabri3D and the free
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Calques3D [63], have recently been developed 3 .

However, a gap between these two types of system still exists. On one hand,
powerful packages devoted to Euclidean geometry have been implemented
in CASs like Maple or Derive [20,37]. But they have incorporated neither
mouse drawing capabilities, nor dynamic capabilities 4 . On the other hand,
well-known 2D DGSs (such as Cabri Geometry, The Geometer’s Sketchpad,
Cinderella, GeoGebra, . . . ) do not provide algebraic facilities, i.e., they can
handle numeric coordinates and equations with numeric coefficients but they
cannot handle symbolic coordinates and equations with symbolic coefficients,
something that we can summarize by saying that “they can’t handle parame-
ters”.

Let us try to illustrate the difference with some examples.

Example 3 If point P lies by definition on line y = x, any DGS can return
its coordinates at a certain instant, e.g. (3,3) or (8,8), but the well-known
DGSs cannot return its general coordinates (just reflecting the membership to
the line), i.e., something like (k, k) (k is the “parameter” in this case).

Example 4 If point P is a free point, any DGS can return the equation of the
line through point (0, 0) and P at a certain instant, e.g. y = 2 ·x or y = −3 ·x,
but the well-known DGSs cannot return the general equation of this “pencil of
lines through point (0, 0)”, i.e., something like y = a · x (a is the “parameter”
in this case).

Example 5 If points P = (p1, p2), Q = (q1, q2) and R = (r1, r2) are free
points, any DGS can return the (approximate) coordinates of the baricenter of
triangle PQR at any time, e.g. (3.45730, 5.56112), but the well-known DGSs
cannot return the coordinates of the baricenter of a general triangle as a func-
tion of the coordinates of its vertices, i.e. (p1+q1+r1

3
, p2+q2+r2

3
) with the notation

of this particular example (p1, q1, r1, p2, q2, r2 are the “parameters” in this
case).

The fact that DGS should be able to handle parameters was underlined years
ago by Tomás Recio [27], on the ground that it would allow DGS to treat

3 There are 3D geometry systems with other philosophies like PyGeo [64] (similar
to a DGS but requiring the construction to be “programmed” in a classic style –i.e.,
typing the corresponding commands), Geomview (3D curves and surfaces), Euler
3D (polyhedra), Archimedes 3D (3D design), . . .
4 Although there are external packages for dealing with CAS-created 3D plots, like
JavaView and Sing Surf for Mathematica and Maple. Note that this is somehow
the opposite of what we intend to do. We would like to draw with the mouse, and
to obtain from the mouse-drawn geometric configuration (without typing at the
keyboard) an algebraic output that could be used as input to the CAS.

3



problems of a higher degree of abstraction.

The aim of this paper is to describe one such attempt to bridge the gap be-
tween DGS and CAS in the context of 3D geometry. In Section 2, we briefly
review how similar works have been done for 2D geometry. In Section 3, we
describe preliminary works to support mechanical theorem proving in 3D ge-
ometry. Finally, Section 4 demonstrates the potentials of such an approach by
describing several applications of a connection between 3D DGS and CAS.

2 State-of-the-art in 2D DGSs - CASs Connection

In order to solve this lack of parameter handling in most DGSs and taking ad-
vantage of the symbolic possibilities of CASs, different solutions for connecting
both environments have been implemented

The possible strategies for collaboration followed by the different authors can
be classified as follows [31,33]:

i) To develop a new system that integrates a new DGS and a new CAS.
Examples:
• Geometry Expert [15,65],
• Java Geometry Expert [10,66],
• Geometry Expressions [43,67].

ii) To develop a new DGS that can communicate with existing CASs.
Examples:
• GEOTHER & Epsilon [44,68,69] → Maple,
• Geometry Expressions ↔ Maple, Mathematica
• GDI [3–5] → CoCoA, Mathematica.

iii) To develop an external translator that allows an existing DGS to commu-
nicate with an existing CAS (this approach has the advantage of reusing
software).
Example:
• paramGeo [34], that connects:

The Geometer’s Sketchpad v.3, v.4 → Maple, Derive
and includes the corresponding Derive and Maple geometric packages (de-
veloped “ad hoc”).

Note that Geometry Expressions appears both under i) and under ii) because it
incorporates a small internal CAS but can also communicate with the external
CASs Maple and Mathematica.

An impressive possibility of Geometry Expressions is to communicate bidirec-
tionally with the external CASs (that is, the results of the CAS can make the
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construction in the DGS change!). That is the reason for typing a ↔ instead
of a → in ii) above. It is, as far as we know, the only DGS with this surprising
and powerful capability.

2.1 Some Examples of the 2D DGSs - CASs Connection

2.1.1 Pythagoras Theorem at a Mouse Click with Geometry Expressions

We know that results related to Pythagoras theorem were known in ancient
Egypt. For example, if a triangle has sides of length 3, 4 and 5, then it is a right
angle triangle (what is very convenient, for example, for building corners).
Babylonian mathematics, although had an impressive accuracy in fields like
astronomy, also presented a lack of formalism.

All the well known DGSs (such as GeoGebra) can be used to find that the
diagonal of a right angle triangle of sides 3 and 4 has length 5 (Figure 1).

Fig. 1. Pythagoras theorem with the “standard” DGS (GeoGebra).

Ancient Greek mathematicians introduced formalism in mathematics and even
an axiomatic construction of geometry (Euclides’ Elements). It is well known
that they knew and used Pythagoras theorem in a formal way.

Let us observe how the DGS Geometry Expressions can deal with Pythagoras
theorem in an abstract way (Figure 2). After drawing point A, the constraint
that A = (0, 0) is added. After drawing point B and point C, that their
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coordinates are (0, c) and (b, 0) (respectively 5 ) are added constraints (this way
B lies on the y axis and C lies on the x axis). If we ask Geometry Expressions to
measure the length of the diagonal of triangle ABC,

√
b2 + c2 is obtained (the

diagonal of the triangle depends on parameters b and c, symbolic expressions
that this DGS can directly manipulate).

Fig. 2. Pythagoras theorem with Geometry Expressions.

Uniquely among DGSs, Geometry Expressions has been designed as a cons-
traint-based system, a feature that enables a direct access to the symbolic
representations of geometry problems, as demonstrated in the previous exam-
ple, and therefore open the road for more general results.

2.1.2 Proving the Existence of the Baricenter of a General Triangle just Typ-
ing One Single Line of Code Using The Geometer’s Sketchpad v.3 and
paramGeo Package

In a standard DGS like The Geometer’s Sketchpad v.3 [48] it is very easy to
draw a triangle and its baricenter (Figure 3). The numerical coordinates of its
baricenter can be obtained (at any time) just clicking with the mouse on this
point. This simple notification is all we can obtain from all the well-known
DGSs: obtaining a proof of the concept is not possible directly from such an
output. However, this limitation can be overcome with the help of an external

5 We choose the coordinates this way so that the length of the side opposite to B
is b and the length of the side opposite to C is c.
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Maple package (paramGeo), by processing a description of the construction,
as shown below.

Fig. 3. Baricenter of a triangle with the “standard” DGS The Geometer’s Sketchpad.

The geometrical constructions produced with The Geometer’s Sketchpad are
denoted “sketches”. In The Geometer’s Sketchpad (GSP) v.3 it is possible
to obtain beautiful, almost natural language text “scripts”, that describe the
geometric configuration and can be automatically created when building a
“sketch” (see Figure 4).

These “scripts” can be automatically translated into Maple or Derive code
by paramGeo’s translator. Note that these “scripts” were unfortunately aban-
doned in GSP v.4 [49], so when working with GSP v.4, paramGeo relies on
the output produced by JavaSketchPad, a feature used to export geometric
constructions on a web page.

Parameters are automatically associated by paramGeo’s translator to the co-
ordinates of the points under “Given:” (Figure 4), unlike the derived points
defined under “Steps:”, which coordinates are expressed using algebraic ex-
pressions in the coordinates of the given points.

For instance, the “script” corresponding to the construction of the baricenter
of a triangle is:

baric.gss

Given:
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Fig. 4. A The Geometer’s Sketchpad v.3 “script” corresponding to the construction
of the circumcenter of a triangle.

Point A

Point B

Point C

---------------

Steps:

1. Let [j] = Segment between Point A and Point B.

2. Let [k] = Segment between Point B and Point C.

3. Let [l] = Segment between Point C and Point A.

4. Let [D] = Midpoint of Segment [l].

5. Let [E] = Midpoint of Segment [k].

6. Let [F] = Midpoint of Segment [j].

7. Let [m] = Segment between Point A and Midpoint [E].

8. Let [n] = Segment between Midpoint [D] and Point B.

9. Let [I] = Intersection of Segment [n] and Segment [m].

10. Let [o] = Segment between Midpoint [F] and Point C.

that is automatically translated by paramGeo into a set of Maple’s instruc-
tions 6 :

6 Note that D and I are reserved words in Maple, and therefore need to be escaped
by the translator package (using D and I instead). Such issue is tricky to remember
when doing this sort of process “by hand”.
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# Sketchpad to Maple automatic translation

# BARIC3.txt -> BARIC3.mpl

#BARIC3.gss

#

#Given:

A:=point(A_x, A_y);

B:=point(B_x, B_y);

C:=point(C_x, C_y);

#---------------

#Steps:

j:=segment(A, B);

k:=segment(B, C);

l:=segment(C, A);

D_:=midpoint(l);

E:=midpoint(k);

F:=midpoint(j);

m:=segment(A, E);

n:=segment(D_, B);

I_:=intersection(n, m);

o:=segment(F, C);

These geometric expressions can be used directly in Maple after loading a
geometric package included with paramGeo. Then, to prove (not only to check)
that the baricenter exists, only that the coordinates of I (algebraic expressions
in Ax, Ay, Bx, By, Cx, Cy) satisfy the equation of the line containing segment
o has to be checked with Maple (so it only requires the user to type one single
line of code!).

2.2 Toward Standardization of the Connection of DGSs and CASs

The authors of GDI and webDiscovery [6] are working at connecting 2D DGSs
and CASs using (and expanding) the standard OpenMath. In the future, any
2D DGS with the possibility to export the constructions in OpenMath format
will be able to access any system that admits OpenMath as input, e.g. the
package specialized in geometric discovery [18,29] webDiscovery (Figure 5).
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Fig. 5. Performing geometric discovery with webDiscovery.

3 3D DGSs – CASs Connection

3.1 3D DGSs – CASs Connection Preliminaries

Roughly speaking, there are two kinds of methods in mechanical theorem
proving and discovery in geometry:

• methods based on the use of Gröbner bases [7,23],
• Wu’s method [9,46,47].

We have been working on these topics for several years (using both kinds of
methods) [32,36].

We have implemented in the CAS Maple a package for 3D geometry, param-
Geo3D, that we have successfully used to find (and prove) some new (!) 3D
geometric theorems, such as:

• a version of Desargues theorem with tetrahedrons [38,39],
• a weak version of Pappus theorem [39,41] (see Figure 6),

10



• a 3D-extension of Steiner chains problem [40],
• a 3D extension of Pascal theorem [42].

It has to be noted that, in all these works, the details of the geometric con-
figurations had to be manually introduced into Maple. This was due to the
small number of suitable 3D-DGS systems available and to the fact that none
of them would support any form of connection with CAS.

Fig. 6. Configuration of a weak version of Pappus theorem in 3D.

But a joint effort by the authors of this paper led to extending the features of
Calques3D so that Mathematica-style and Maple-style versions of the history
of a construction (Figure 8) could be exported.

Calques3D is a 3D DGS that shares most of the features of traditional DGSs;
It supports the drawing of:

• points (see Figure 7), segments, lines, planes, spheres, . . .
• a point on a line, on a plane, on a sphere, . . .

and the construction of:

• the midpoint of a segment, the parallel line to a line through a point, the
normal line to a line through a point, the perpendicular plane to a line
through a point, . . .

• the intersection of two lines, of a line and a plane, of two spheres, . . .

Let us analyze what Calques3D history files really provide. For instance, if
we draw three free points, the plane through them and a point lying on this
plane, and we export the history file to Maple, we obtain something like:

11



Fig. 7. Drawing a point in Calques3D.

Fig. 8. Obtaining the “history” of a Calques 3D construction: perpendicular line to
a plane, the latter defined by three non-collinear points.

> Range(-0.5,4.9,-0.9,4.9,-0.5,0.5);

> FreePointD(Pt1,3,0,0);

> FreePointD(Pt2,2,3,0);

> FreePointD(Pt3,4,4,0);

> PlaneD(Pl4,Pt1,Pt2,Pt3);

> PointOnPlane(Pt5,Pl4);

Its first line is related to the visible part of the 3D space. The following three
lines declare the first three objects to be points (as their names begin with
a Pt) and include their numeric coordinates. The following line includes the
description of the fourth object: the plane (as its name begins with a Pl)
passing through points Pt1, Pt2 and Pt3. The last line describes the fifth
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object as a point lying on plane Pl4.

Therefore, a Calques3D history file is comparable to a The Geometer’s Sketch-
pad v.3 script : although it is in CAS syntax, it cannot include symbolic coor-
dinates and equations with symbolic coefficients (i.e., parameters), so it is not
useful for symbolic tasks.

This possibility of Calques3D to export constructions in CAS syntax was also
used by Botana et al. in their system 3D-LD [2]. It adopts our philosophy of
software reuse [31,34] and also processes Calques3D output and use the result-
ing data as input to 3D-LD, that calls the CASs CoCoA and Mathematica for
performing algebraic computations externally. Nevertheless this system was a
prototype exclusively oriented to determining algebraic surfaces as geometric
loci.

3.2 Connecting Calques3D with Maple

The key ideas behind this approach are:

• to use the preexisting capability of Calques3D to export the history of a
construction in Maple-style syntax,

• to transform these history files, with a new “translator” designed ad hoc and
written in Maple, so that symbolic coordinates and equations with symbolic
coefficients can be inferred from the construction steps,

• to make the “translator” act as a mediator between the Maple-style or-
ders exported by Calques 3D and those understood by Maple after loading
paramGeo3D package,

• to adapt and reuse the existing Maple paramGeo3D package mentioned
above

in order to develop a connection between Calques3D and Maple that can
handle symbolic coordinates and equations with symbolic coefficients. This
way many of Calques 3D’s “commands” (those related with the “3D ruler and
compass geometry”) are now accessible for symbolic computation.

Our purpose in not only mechanical theorem proving and discovery in geom-
etry, but a wider one:

• to explore 3D geometric problems that can be drawn in a 3D extension of
“ruler and compass geometry”, and

• to automatically obtain their equations (for any required purpose, not only
for mechanical theorem proving).
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3.3 Implementation

In a nutshell, the connection process currently implemented is as follows: the
geometric configurations are drawn with Calques3D, exported as a “history”
file in Maple format, transformed by our specific package (so that symbolic
coordinates and equations with symbolic coefficients can be processed) and
finally used by Maple to perform any appropriate computations.

3.3.1 The Translator File

The translator file translator.mpl contains procedures that convert the Calques3D
history (in Maple format) into a specific paramGeo3D syntax.

Most of them are very simple. For instance, Calques3D ’s command SegmentD

calls paramGeo3D ’s segment command and only has to consider that param-
Geo3D works in projective coordinates and that n (the name of the object) is
a global variable in paramGeo3D :

> SegmentD:=proc(n,P,Q)

> n:=subs(x0=1,segment(P,Q));

> end:

The reason for considering x0 = 1 is that P and Q cannot be points at infinity,
as they have been input as free points using Calques3D.

The reason for paramGeo3D to work with projective coordinates is that it is
often convenient in mechanical theorem proving in geometry to work with pro-
jective coordinates (for instance, degenerate cases related to an intersection
point that vanishes when the two intersection lines become parallel, disap-
pear 7 ). However, a command in the paramGeo3D package allows to obtain
the affine coordinates of a point, so that the use of projective coordinates can
be kept hidden to the user.

For some constructions, like perpendicular lines, the translation is not so
straightforward. In this case, Calques3D ’s command PerpendicularLine in-
cludes only the name of the new line (n) and references to the base objects
of the construction, a point (P1) and a line (L1). The translator calculates
the pedal point of the perpendicular to L1 through P1 (using paramGeo3D
commands) and assigns to variable n the line through P1 and the pedal point:

7 The treatment of degenerated cases is an important problem in automated theo-
rem proving [21]. Another important fact is that we sometimes draw and think in
Rn and carry out the computations in Cn [35]. Moreover, there are discussions and
different opinions about what is a “true” theorem [1,8,11,13,28].
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> PerpendicularLine:=proc(n,P1,L1)

> local Pperp,PenRec;

> Pperp:=perpendicular(L1,P1);

> PenRec:=intersection(L1,Pperp);

> n:=subs(x0=1,line(P1,PenRec));

> end:

Finally, the family of intersection commands has been carefully analyzed.
For instance, when intersecting planes, one algebraic object is returned by
Calques3D history file:

> IntersectionPlanes:=proc(n,PL1,PL2)

> n:=subs(x0=1,intersection(PL1,PL2));

> end:

meanwhile when intersecting a line and a sphere, two algebraic objects (which
would coincide when the line is tangent to the sphere) are returned by Calques3D
history file, and they have to be distinguished:

> Intersection1LineSphere:=proc(n,S1,L1)

> local PtInt;

> PtInt:=intersection(S1,L1);

> n:=map(rhs,solve(PtInt,[x1,x2,x3])[1]);

> end:

> Intersection2LineSphere:=proc(n,S1,L1)

> local PtInt;

> PtInt:=intersection(S1,L1);

> n:=map(rhs,solve(PtInt,[x1,x2,x3])[2]);

> end:

3.3.2 The paramGeo3D Package

As said above, paramGeo3D package [39] had already been used by the authors
in automatic theorem proving and discovery [38–42]. In those works we had
to directly type in Maple the details of the geometric configurations, instead
of drawing the construction with the 3D DGS (as proposed in this article).

Let us include the code corresponding to plane procedure (that is called when
translating Calques3D history command PlaneD), in order to get the flavor of
paramgeo3D implementation:

> plane:=proc(P::list,Q::list,R::list)

> local d:

> d:=plane_(P,Q,R):

15



> if d=0 then

> ERROR(‘the three points must be non-collinear‘)

> fi:

> constLess(d)=0

> end:

> plane_:=proc(P::list,Q::list,R::list)

> det(matrix([[x0,x1,x2,x3],

> [P[1],P[2],P[3],P[4]],

> [Q[1],Q[2],Q[3],Q[4]],

> [R[1],R[2],R[3],R[4]]]))

> end:

Procedure plane stores in variable d the equation of the plane through three
points, P , Q, R (this polynomial is computed as a determinant by subproce-
dure plane ). If d is equal to zero, it returns an error message. Finally, using
procedure constLess, the constants that are a common factor to all terms of
polynomial d are suppressed.

3.3.3 Calques 3D History Files Commands

The commands, currently available for translating the actions in Calques3D,
are:

• FreePointD: draw a free point,
• SegmentD: draw a segment defined by its two endpoints,
• LineD: draw a line through two given distinct points,
• PlaneD: draw a plane through three given points,
• SphereD: draw a sphere (spherical surface), given its center and a point on

the sphere,
• SphereRadiusD: draw a sphere (spherical surface), given its center and its

radius (a segment),
• MidPoint: draw the midpoint of a given segment,
• ParallelLine: draw the parallel line to a given line or segment through a

given point,
• NormalLine: draw the normal line to a given plane through a given point,
• NormalPlane: draw the normal plane to a given line through a given point,
• PerpendicularLine: draw the perpendicular line to a given line through a

point not belonging to the given line,
• ParallelLine: draw the parallel line to a given line through a given point,
• IntersectionLinePlane: draw the intersection point of a given line and a

given plane that are not parallel,
• IntersectionLines: draw the intersection point of two given lines that are

coplanar but not parallel (i.e., that intersect exactly in a point),
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• Intersection1LineSphere, Intersection2LineSphere: two points are ob-
tained in the general case when an intersection line-sphere is computed by
the 3D-DGS, and each of these two commands refer to one of them (in case
of tangency, the two commands would refer to the same point),

• IntersectionPlanes: draw the intersection line of two given planes that
are not parallel,

• IntersectionSphereSphere: draw the intersection of two given spheres
(spherical surface); it can be a circle (circumference), a point or the empty
set,

• PointOnSegment: draw a point lying on the given segment 8 ,
• PointOnLine: draw a point lying on the given line,
• PointOnPlane: draw a point lying on the given plane,
• PointOnSphere: draw a point lying on the given sphere (spherical surface)

(the names of these commands have been taken from Calques3D symbolic
output for Maple).

Obviously, the commands above, as well as those commands in Maple’s param-
Geo3D package, can be “manually” called from within a Maple session.

An overview of some possible applications of the 3D DGS-CAS connection
developed is given in the next sections.

4 Applications of the Calques3D – Maple Connection provided by
paramgeo3D

We first give two examples of a straightforward application of the process,
obtaining the equations of geometrical objects that are known by Calques3D
(Section 4.1) or even that cannot be handled by it (such as loci, Section 4.2).

Three examples of mechanical theorem proving will then be shown in Sec-
tions 4.3 to 4.5:

• the diagonals of a parallelepiped are concurrent,
• a 3D version of Desargues theorem (for triangles),
• a 3D version of Ceva and Menelaus theorems.

This latter example illustrates a case of Calques3D – Maple connection that
cannot be performed by just using the standard output provided by Calques3D
but needs some editing by the user.

8 Let us stress that the points drawn by the commands of the PointOn... family
are not free points, but have one or two degrees of freedom.
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Note that, in all the following examples, the Maple session should begin by
loading:

• paramGeo3D Maple package, and
• the translator Maple package

before loading the relevant “history” file exported by Calques3D.

4.1 Application I: Obtaining the Equations of a 3D Geometric Object known
by Calques3D

A first straightforward application would be to obtain the generic equations
of a geometric object directly constructed with Calques3D that is known by
this 3D DGS, as shown in the next example.

Example 6 Obtaining the general equation of the tangent plane to a given
sphere.

We want to calculate the general equation of the tangent plane to the sphere
of center (0, 0, 0) and radius r through any point on it. We first draw the
geometric configuration using Calques3D (Figure 9), by following these steps:

Fig. 9. The tangent plane to a sphere constructed with Calques3D.

• select magnetism 9 and draw point Pt1 = (0, 0, 0),

9 In Calques3D, the coordinates of a point are not editable by the user. The only
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• deselect magnetism (so that the next point is really a free one, without re-
strictions),

• draw point Pt2 on the x axis,
• draw the sphere Sph3 of center Pt1 through Pt2,
• draw a point Pt4 on sphere Sph3,
• draw the line Ln5 through Pt1 and Pt4,
• draw the perpendicular plane (Pl6) to Ln5 through Pt4.

Then we can automatically obtain the corresponding “history” file:

> Range(-2.0,2.0,-2.0,2.0,-2.0,2.0);

> FreePointD(Pt1,0,0,0);

> FreePointD(Pt2,23/15,0,0);

> SphereD(Sph3,Pt1,Pt2);

> PointOnSphere(Pt4,Sph3);

> LineD(Ln5,Pt1,Pt4);

> NormalPlane(Pl6,Pt4,Ln5);

Now we can start Maple and load the files. For the sake of simplicity, we
rename the radius as r. Then we can directly ask Maple to return the equation
of plane Pl6, the (general) tangent plane to the given sphere (# is used in
Maple to add comments, that is, lines preceded by # are not executed):

> # rename radius (i.e., Pt2x) as r

> Pt2x:=r:

> # get the equation of plane Pl6

> Pl6;

Pt4z P t4x x1 + Pt4z P t4y x2 + Pt4z2 x3
− Pt4x2 Pt4z − Pt4z P t4y2 − Pt4z3 = 0

that is the general equation of the tangent plane to the given sphere through a
generic point Pt4 = (Pt4x, P t4y, P t4z) on it. Such a general expression would
not be obtainable from a standard 3D DGS, like plain Calques3D.

It must be taken into account that point Pt4 was defined as lying on sphere
Sph3. Consequently, the coordinates of Pt4 = (Pt4x, P t4y, P t4z), must satisfy
the equation of Sph3. The corresponding polynomial is automatically calculated
and stored in list LREL by paramGeo3D package:

> LREL;
[Pt4x2 + Pt4y2 + Pt4z2 − r2]

(as Sph3 is the sphere of center (0, 0, 0) and radius r, its equation is x12 +

way to obtain integer coordinates is to activate the magnetism that will bind the
points drawn by the user (i.e., the free points) to the underlying grid. Choosing
carefully the initial points is very useful for simplifying the computations.

19



x22 + x33 − r2 = 0).

Let us check this general equation of the tangent plane in a simple example.
The points on the sphere satisfying x = 0 and y = z are (0,

√
2r
2

,
√

2r
2

) and

(0,−
√

2r
2

,−
√

2r
2

). They can be easily obtained with Maple:

> # substitute Pt4x=0 and Pt4z=Pt4y in the first element of LREL

> subs(Pt4x=0,Pt4z=Pt4y,op(1,LREL)):

> # now solve the previous expression for Pt4y

> solve(%,Pt4y); √
2r

2
,−
√

2r

2

Let us consider, for instance, the first value, i.e, point (0,
√

2r
2

,
√

2r
2

), and let us
substitute these coordinates in the general equation of the tangent plane P16
obtained above, and solve it for x3:

> subs(Pt4x=0,Pt4y=1/2*2^(1/2)*r,Pt4z=1/2*2^(1/2)*r,Pl6);
1

2
r2x2 +

1

2
x3r

2 − 1

2

√
2r3 = 0

> x3=solve(%,x3);

x3 = −x2 +
√

2r

The result is trivially correct: the angle between this plane and a horizontal
plane is 450 and it passes through (0,

√
2r
2

,
√

2r
2

).

4.2 Application II: Obtaining the Equations of a Geometric Locus that is not
a 3D Geometric Object known by Calques3D

It is also possible to obtain the equations of geometric loci constructed using
Calques3D, as shown in the next example.

Example 7 Obtaining the equation of an ellipsoid.

We shall calculate now the equation of the ellipsoid of foci (0, 0, 0) and (1, 0, 0)
and sum of distances to the foci equal to 2 (Figure 10). A modification for 3D
of the common gardener’s method for drawing ellipses will be used.

The process followed to draw the ellipsoid is:

• choose magnetism and draw points Pt1 = (0, 0, 0) and Pt2 = (1, 0, 0) as
foci and Pt3 = (0, 2, 0),

• draw segment Sg4 = Pt1Pt3,
• draw a point, Pt5, lying on this segment,
• draw the two segments that the previous point defines in segment Sg4,
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Fig. 10. Constructing an ellipsoid with Calques3D.

• draw the two spheres defined by one of the foci and one of these two seg-
ments.

The corresponding “history” file is:

> Range(-1.9,2.1,-1.9,2.5,-1.9,1.9);

> FreePointD(Pt1,0,0,0);

> FreePointD(Pt2,1,0,0);

> FreePointD(Pt3,0,2,0);

> SegmentD(Sg4,Pt1,Pt3);

> PointOnSegment(Pt5,Sg4);

> SegmentD(Sg6,Pt1,Pt5);

> SegmentD(Sg7,Pt5,Pt3);

> SphereRadiusD(Sph8,Pt1,Sg6);

> SphereRadiusD(Sph9,Pt2,Sg7);

> IntersectionSphereSphere(Cr10,Sph8,Sph9);

As point Pt5 is defined as lying on segment Sg4 (itself contained in the y
axis), it has one degree of freedom. Therefore, its coordinates could be written,
for instance, as Pt5 := (0, k1) (0 ≤ k1 ≤ 2). Let us observe that, when a
Calques3D PointOnSegment command is detected by the translator, param-
Geo3D’s pointOnSegment command is automatically called with kn (n ∈ N)
as first input (n is initialized as 1 the first time pointOnSegment is used, and
is increased by one each time pointOnSegment is called). Therefore, a k1 will
appear as parameter in all computations involving the coordinates of Pt5.
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So, paramGeo3D has automatically obtained as locus (without the user having
to type anything):

> Cr10;

[4x22 + 4x32 + 48k12 + 9− 48k1, 2x1 + 3− 8k1]

(that is, the intersection circle of the two spheres is expressed by paramGeo3D
as the intersection of a cylinder and a plane, i.e., two algebraic varieties, both
depending on a parameter, k1). Again, such an expression, that is key for
obtaining the equation of the locus, would not be obtainable from a standard
3D DGS, like plain Calques3D.

We can now ask Maple to rewrite this parameter-depending description, by
eliminating the parameter from the two equations, in order to obtain the equa-
tion of the locus (in the next line, Cr10 is converted from list to set using op,
before applying eliminate):

> eliminate({op(Cr10)},k1);

[{k1 =
x1

4
+

3

8
}, {16x2

2 + 16x2
3 + 12x2

1 − 12x1 − 9}]
Let us focus on the equation of the ellipsoid (the second element). It can be
written:

> # order the element of the second element of the previous

> # output w.r.t. the pure lexicographic order, being x1>x2>x3

> sort(op(op(2,%)),[x1,x2,x3],plex);

12x2
1 − 12x1 + 16x2

2 + 16x2
3 − 9

so the equation of the ellipsoid can be written:

> %/12=0;

x2
1 − x1 +

4

3
x2

2 +
4

3
x2

3 −
3

4
= 0

We can now plot the ellipsoid with Maple using command implicitplot3d

(Figure 11).

4.3 Application III: Mechanical Theorem Proving in 3D Geometry

Let us begin with a very simple case.

Example 8 The diagonals of a parallelepiped are concurrent.

We first draw the geometric configuration (Figure 12) and can afterwards au-
tomatically obtain the corresponding “history” file (that is not included for the
sake of brevity).

The process followed to draw the parallelepiped is:
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Fig. 11. Drawing with Maple an ellipsoid constructed with Calques3D.

Fig. 12. Drawing a parallelepiped and its diagonals with Calques3D (some lines have
be hidden to make the figure easier to visualize).

• draw three different points on plane z = 0 and a fourth point outside this
plane (they are four vertices of the parallelepiped, and, if chosen this way,
the pallelepiped, when completed, is completely general and cannot be a de-
generated one),

• complete a parallelogram from the three points on plane z = 0 (drawing
parallel lines and intersecting them),

• complete a parallelepiped from the parallelogram on plane z = 0 and the
point outside this plane (drawing parallel lines and intersecting them),
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• draw the four diagonals of the pallelepiped.

Now we can check with Maple that the intersection point of two of the four
diagonals (Pt23), which coordinates have been automatically provided by the
“history” file, belongs to the other two diagonals, (Ln24 and Ln25) –all these
objects are defined in the “history” file.

We shall use paramGeo3D’s command isPlaced to check it. This command
receives as input a point and an object. The latter is:

a) either directly defined by its equation, as is the case for a plane (from the
algebraic point of view, the object is a surface),

b) or given as the intersection of two objects directly defined by their equations,
as is the case for a line –given as the intersection of two planes (from the
algebraic point of view, the object is a curve, defined as the intersection of
two surfaces)

and returns as output the result of substituting the coordinates of the point in
the equation(s) of the object. Therefore, the given point lies on the given object
if and only if:

a) 0 is obtained
b) [0, 0] is obtained

(respectively).

Let us check our present example:

> isPlaced(Pt23,Ln24);

[0, 0]

> isPlaced(Pt23,Ln25);

[0, 0]

As [0, 0] is obtained in both cases, the point lies on the other two diagonals
too.

We would like to stress that, after loading paramGeo3D and the translator
Maple packages and the “history” file in Maple format, all what the user had
to type in the Maple session to obtain the formal proof were the two lines
above!

24



4.4 Application IV: Checking that Certain Coordinates or Equations do Cor-
respond to a Locus

Determining geometric loci can be linked to mechanical theorem proving in
geometry. For instance, we have proven in Example 8 that the diagonals of a
parallelepiped are concurrent. Now we can use the Calques3D – Maple connec-
tion provided by paramgeo3D to check that the coordinates of such intersection
point are the average of the coordinates of the vertices of the parallelepiped.

Example 9 The coordinates of the common point to the diagonals of a par-
allelepiped are the average of the coordinates of its vertices.

With the notation of Example 8 (this is a continuation of it), we have to check
that the coordinates of Pt23 are the average of the coordinates of Pt1, Pt2,
Pt3, Pt4, Pt10, Pt15, Pt18, Pt19.

The coordinates of Pt23 are 10 :

> Pt23;

Pt23 := [1,−Pt1x

2
+

Pt2x

2
+

Pt4x

2
+

Pt3x

2
,
P t1y

2
+

Pt4y

2
+

Pt2y

2
−Pt3y

2
,
P t4z

2
]

Observe that not all Pt1, Pt2, Pt3, Pt4, Pt10, Pt15, Pt18, Pt19 appear in
the expression of Pt23 above. That happens because there are dependencies
between the coordinates of these points (i.e., they are not all free points –due
to the parallelism declarations). This is why the result is not trivial, and some
computations have to be made.

So let us compare the (affine) coordinates of Pt23 with the average of the
(affine) coordinates of the vertices 11 :

> # x coordinate

> op(2,Pt23);

−Pt1x

2
+

Pt2x

2
+

Pt4x

2
+

Pt3x

2

10 Let us remember that, as said in Section 3.3.1, the package works with projective
coordinates. The points are determined by lists of four coordinates, and when the
first one is zero, it corresponds to a point at infinity.
11 Let us remark that we are working in this example with affine coordinates, al-
though paramGeo3D internally works with projective coordinates. As the eight ver-
tices of the parallelepiped (Pt1, P t2, P t3, P t4, P t10, P t15, P t18, P t19) were intro-
duced directly as points drawn with Calques3D, their coordinates are all of the form
(1, ..., ..., ...), as can be easily checked (in other examples, where this was not the
case, we could also use paramGeo3D command afinCoor to express the projective
coordinates this way). Therefore averaging coordinates makes sense here.
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> (Pt1[2]+Pt2[2]+Pt3[2]+Pt4[2]+Pt10[2]+Pt15[2]+Pt18[2]+Pt19[2])

/8;

−Pt1x

2
+

Pt2x

2
+

Pt4x

2
+

Pt3x

2

So the result holds for the first (affine) coordinate. The same happens for the
other two coordinates, and therefore the result is true.

4.5 Application III: Mechanical Theorem Proving in 3D Geometry (Contin-
ued)

In Example 8 a very simple example of mechanical theorem proving in geom-
etry was presented. As will be shown in Examples 10 and 11, the symbolic
connection between Calques3D and Maple provided by paramGeo3D allows
to prove, with just some mouse clicks and typing one or two lines of Maple
code, non-trivial 3D geometric theorems.

Example 10 A 3D version of Desargues theorem (for triangles).

The steps followed in the construction of the configuration are the following
(see Figure 13):

• draw a non-degenerated triangle, which three vertices are outside plane z =
0, first (directly with side-lines),

• choose a point that is neither on the plane containing the triangle nor on
plane z = 0,

• project the vertices of the triangle on plane z = 0 (as the vertices of the tri-
angle of the first step are outside this particular plane, there is no possibility
of encountering a degenerate case; moreover, there is no loss of generality
by projecting on that plane –this plane is only chosen in order to simplify
the equations obtained),

• construct the side-lines through the projections of the vertices,
• intersect each pair of corresponding side-lines (3 points are obtained),
• construct the line through 2 of these points,

and the thesis is that this line passes through the third point.

The history file provided by Calques3D is not included for the sake of brevity.
The three points obtained in the penultimate step of the construction are Pt23,
Pt26 and Pt29 and the line through Pt26 and point Pt23 is denoted Ln30.
Now we only have to check with Maple that point Pt29 lies on line Ln30:

> isPlaced(Pt29,Ln30);

[0, 0]
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Fig. 13. A 3D version of Desargues theorem with triangles.

As [0, 0] has been returned, Pt23 lies on Ln30 (because it lies on the two
surfaces defining line Ln30), so the result is true in general.

We shall finally include an example of mechanical theorem proving of a dif-
ferent kind, where a rate between segments is involved. This makes it neces-
sary to exchange by hand PointOnLine by PointOnLineRate in some lines of
the Calques3D history file, in order to make use of paramGeo3D ’s command
pointOnLineRate.

Example 11 A 3D version of Ceva and Menelaus theorems.

The steps followed in the construction of the configuration (see Figure 14) are
the following:

• draw Pt1 = (0, 0, 0), Pt2 = (1, 0, 0) and Pt3 on plane z = 0, and Pt4
outside plane z = 0,

• draw consecutive side-lines of the tetrahedron, for instance, Pt1Pt2, Pt2Pt3,
Pt3Pt4 and Pt4Pt1 (important: select the points in the order specified, e.g.,
first Pt4 and then Pt1),

• draw a point on each of these side-lines: Pt9, Pt10, Pt11, Pt12 (respec-
tively),

• draw the plane Pl13 through the points Pt9, Pt10, Pt11.

Then, if the ratios (m, n, p, q) of the two segments in which the points Pt9,
Pt10, Pt11 and Pt12 divide the corresponding segment verify m · n · p · q = 1,
the four points are coplanar.
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Fig. 14. A 3D version of Ceva and Menelaus theorems.

The history file provided by Calques3D is:

> Range(-0.5,3.7,-1.2,4.4,-0.8,6.1);

> FreePointD(Pt1,0,0,0);

> FreePointD(Pt2,1,0,0);

> FreePointD(Pt3,79/45,129/67,0);

> FreePointD(Pt4,69/68,177/95,143/54);

> LineD(Ln5,Pt1,Pt2);

> LineD(Ln6,Pt2,Pt3);

> LineD(Ln7,Pt3,Pt4);

> LineD(Ln8,Pt4,Pt1);

> PointOnLineRate(m,Pt9,Sg5); #PointOnLine(Pt9,Ln5); #by hand

> PointOnLineRate(n,Pt10,Sg6); #PointOnLine(Pt10,Ln6); #by hand

> PointOnLineRate(p,Pt11,Sg7); #PointOnLine(Pt11,Ln7); #by hand

> PointOnLineRate(q,Pt12,Sg8); #PointOnLine(Pt12,Ln8); #by hand

> PlaneD(Pl13,Pt9,Pt10,Pt11);

where we have manually substituted the PointOnLine command by Point-

OnLineRate command, in order to specify the ratios (m, n, p, q) of the two
segments in which the point divides the corresponding segment.

Plane Pl13 is defined as the plane passing through points Pt9, Pt10, Pt11.
Let us check with Maple that the theorem holds, i.e., that if

m · n · p · q = 1 ⇔ m =
1

n · p · q
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then Pt12 lies on plane Pl13:

> isPlaced(Pt12,Pl13);

Pt3y Pt4z −m n q Pt4z p P t3y

> subs(m=1/(n*p*q),%);

0

Therefore the theorem has been proven just adding four lines of code to the
history file and typing two lines of code.

5 Conclusions

This work has a didactic application in geometric problems exploration. Nev-
ertheless, its main interest is to provide a convenient way to explore and auto-
matically obtain the corresponding algebraic or numerical data when dealing
with a 3D extension of “ruler and compass geometry”, which has a wider scope
than only educational purposes (e.g., mechanical theorem proving in geome-
try, geometric discovery, geometric loci finding...). As far as we know, apart
from the restricted prototype 3D-LD, there is no comparable software for 3D!

We would like to underline that, as shown in Example 11, manually editing
the output of the DGS is sometimes needed. Further developments have to be
carried out in the DGS side to completely characterize these cases. But both
options are not mutually exclusive: both may need to be done in some cases.

To summarize, the export, translation and treatment of the construction his-
tory, in order to obtain a format usable by Maple, and involving symbolic
coordinates and equations with symbolic coefficients, has now been completed
and expanded to cover all the “ruler and compass geometry”.

As future work, Calques 3D ’s author is now working on improving the user
interface with ParamGeo3D, using the openMaple API [70,25], which allows
direct calls to the Maple kernel from external programs. This will remove the
need, as described in this paper, of working alternately with the two systems
and saving/loading an intermediary file. But, in the long-term, it will also
open the possibility for supporting the other part of the DGS-CAS commu-
nication: being able to immediately use the output of the CAS for modifying
or constructing new elements in a configuration (as Geometry Expressions is
already able to do in the 2D case).
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