
Document title: D4.1 - Report on the development of version 1 of the Personalisation Engine

Last updated: April 2008

D4.1 Report on the development of
version 1 of the Personalisation Engine

Project Information

Project Acronym MyPlan

Project Title MyPlan - Personal Planning for Learning throughout Life

Start Date 1st September 2006 End Date 30th November 2008

Lead Institution Birkbeck College, University of London

Project Director Prof. Alex Poulovassilis & Dr George Magoulas
School of Computer Science and Information Systems, Birkbeck
College, University of London, Malet Street,
London WC1E 7HX, UK
{ap,gmagoulas}@dcs.bbk.ac.uk

Project Manager &
contact details

Dr Nicolas Van Labeke
Birkbeck College, University of London
London Knowledge Lab
23-29 Emerald St
London WC1N 3QS, UK
nicolas@dcs.bbk.ac.uk

Partner Institutions Institute of Education; Community College Hackney; UCAS;
Linking London Lifelong Learning Network

Project Web URL www.lkl.ac.uk/research/myplan/

Programme Name
(and number)

e-Learning Capital Programme

Programme Manager David Kernohan

Document Name

Document Title D4.1 - Report on the development of version 1 of the
Personalisation Engine

Reporting Period April 2007 – December 2007

Author(s) & project
role

Nicolas Van Labeke (project manager – WP4 leader)

Date 01/10/2007 Filename MyPlan D4.1.doc

URL

Access Project and JISC internal � General dissemination

 2

Document History

Version Date Comments

0.1 11/10/2007 First draft ready for revision

1.0 20/11/2007 First draft ready for revision

2.0 21/04/2008 Final document circulated

Executive Summary
This deliverable covers workpackage WP4 (Development and deployment of personalised
functionalities for planning of lifelong learning) and reports on the current state of the
(re)design of the L4All system. Τhe developed personalisation engine will provide: (i)
personalised search of timelines from "people like me"; (ii) personalised recommendation of
which course(s) to study next; (iii) customisation of the delivery and presentation of contents.

The design of the system is now reaching completion and is under internal testing before
being transferred to the server that will be used for the online evaluation and user testing.
This report was initially planned at month 12 but has been postponed to month 14. That was
necessary in order to cover the extra work (2 months) required for the redesign of the user
interface, which was not included in our original project plan. The main activities performed
to achieve our targets in this workpackage included:

• Redesign of the GUI of the L4All system, using DHTML/javascript for the front-end and
JSP/servlet for the back-end.

• Redesign of several aspects of the ontology underlying the L4All system to
accommodate for the new functionalities: different categories of user (learner, expert,
institution), a two-axis taxonomy of events, etc.

• Design and implementation of a similarity measure engine for the comparison of
learner’s timelines. The mechanism is based on converting timelines into string of
comparable tokens and on using string metrics for ranking them.

• Design and implementation of a recommendation engine, using the timeline formalism to
represents requirements/recommendations and the similarity engine for proposing
matches.

• Design and deployment of several customisation procedures (colour/shapes used in the
timeline visualisation, bookmarks for interesting timelines, etc.)

 3

Table of Content
Executive Summary .. 2
Table of Content.. 3
I have updated the TOC above, as it didn’t show the Conclusion section............... Error! Bookmark not defined.
Figures and Tables ... 3
1 Introduction... 4
2 Redesign of the Graphical User Interface .. 4

2.1 Visualisation of Timelines ... 5
2.2 Accessing L4All Functionalities... 7
2.3 Feeding Back to the Timeline ... 9

2.3.1 Exploiting Courses .. 9
2.3.2 Exploiting Timelines .. 10

2.4 The Administrative Desktop .. 11
3 Modifications of the Back-End Engine.. 12

3.1 System Architecture.. 12
3.2 User Model ... 15
3.3 Episode Model .. 15
3.4 Timeline Model ... 17

4 Similarity Metrics .. 17
4.1 Timeline Encoding .. 17
4.2 A Comparison of String Metrics .. 18
4.3 Results and Interpretation... 19

5 The Personalisation Engine.. 20
5.1 Searching for Timelines of “people like me”.. 20
5.2 Recommendations.. 21
5.3 Customisation of the L4All System ... 24

6 Conclusion.. 24
7 References... 25
8 Appendix: List of similarity metrics ... 26

Figures and Tables
Figure 1. An overview of the L4All main interface. ..5
Figure 2. An example of a lifelong learner's timeline, as visualised in L4All..6
Figure 3. Visualising the properties of an episode...6
Figure 4. Customisation of the L4All user interface, where the visualisation of the timeline can be

personalised...7
Figure 5. Modifying the user profile and preferences. ...8
Figure 6. The query interface for searching for “people like me” (left) and the result of the search (right).9
Figure 7. Searching for courses and exploring their details. ...9
Figure 8. Adding the selected course in the user's timeline. ...10
Figure 9. Displaying the user’s timeline (top) in parallel to another user's timeline (bottom).................................11
Figure 10. Registering an expert user in the administrative desktop...12
Figure 11. L4All System Architecture. ...12
Figure 12. The Servlets (interface and service) of the L4All system. ..13
Figure 13. An extract of the flowchart of the L4All system. ...14
Table 1. The different episodes available in the L4All system and their classification ..16
Figure 14. Extract of the XML encoding of the qualifications classification. ..16
Table 2. List of encoded timelines used for the metrics comparison. ..19
Table 3. The normalised similarity between the source and the test timelines..19
Figure 15. Searching for “people like me”. ..21
Figure 16. The Needleman – Wunsch distance matrix..24

 4

1 Introduction
As outlined in deliverable D3.1 (MyPlan Personalisation Specification), the personalisation
functionalities intended for L4All and prioritised for the current development of the system as
are follows:

1. Personalised search of timelines from "people like me"

2. Personalised recommendation of which course(s) to study next

3. Customisation of the system

4. Automatic update of users’ profiles

5. Ability to record and display ratings of search results

The current version of the L4All system, as described in this document, is tackling the first
three issues, and the automatic update and user-defined rating will be addressed in the
future. The reasons for the focus on the first three issues is that they required a significant
amount of development, as well as the need for a redesign of the Graphical User Interface.

This document is organised as follows. First, the new GUI will be presented, highlighting the
significant changes both at presentation and functionality levels. Second, we will address the
changes in the back-end engine that were required in order to support the new
functionalities. Third, the similarity metrics used for comparing timelines and the essential
elements for performing personalisation in L4All will be discussed. Fourth, the
personalisation engine, encompassing the search for similar timelines, the personalised
recommendation and the customisation, will be presented.

2 Redesign of the Graphical User Interface
The deployment of the new personalisation functionalities in the L4All system suffered some
delays from the work plan initially devised. The main reason was that the original Graphical
User Interface used for the creation and manipulation of a learner's timeline (initially
developed as a Flash module, embedded in the JSP-powered web pages) didn’t offer the
necessary flexibility to incorporate additional functionalities. A decision was therefore made
to redesign the interface of the system, using DHTML and javascript-powered widgets to
deploy the timelines. This decision allowed us to improve the possibilities of learners'
interaction with their timeline (maintenance of their own and, more important, visual
comparison between their timeline and someone else's) and therefore to better support
personalisation of timeline-based functionalities.

 5

Figure 1. An overview of the L4 All main interface.

Figure 1 shows a snapshot of the main page of the current system. At the core of the system
is the representation of the user's timeline (labelled ���� in the figure), around which all
functionalities of L4All are now organised: user profile and timeline management, keyword
search for courses in the LearnDirect database, keyword search for people and timelines
registered in the L4All system, search for similar timelines, search for pathways
recommendations, etc. Access to these functionalities is provided by specific items in the
left-hand side menu (labelled ���� in the snapshot). On the right-hand side of the timeline lies a
bookmarks space (labelled ���� in the figure) used by the learner to store shortcuts to
interesting timelines (gathered by searching for people or “similar” timelines, see below).

2.1 Visualisation of Timelines
The visualisation of the timeline is supported by a dedicated DHTML widget1. It represents
every episode in a user’s timeline, in a chronological fashion (see Figure 2). The timeline
space is divided in two zones2:

• The large strip at the bottom contains the whole timeline in “real-size”, with a time scale
(typically in years) that allows a clear visualisation of every event.

• The small strip at the top presents a summary of the timeline with a smaller time scale
(usually in decades), which provides a quick overview of the whole timeline (or at least a

1 The SIMILE timeline is a DHTML-based AJAX widget for visualizing time-based events, see
http://simile.mit.edu/timeline/

2 A third strip can also be present, for displaying another timeline in parallel to the user's one, see
below, section 2.3.2.

1

3

2

 6

significant chunk).

Figure 2. An example of a lifelong learner's timeli ne, as visualised in L4 All .

Both strips can be dragged backward and forward, showing past and future episodes. Both
strips are also synchronised, meaning that dragging one will re-centre the second
accordingly. This mechanism allows an easy and intuitive manipulation of the timeline by its
user. Episodes are accessible to the user: by simply clicking on one of the block in a strip, a
“balloon” help pops up (see Figure 3), containing more detailed information about the
selected episode (dates, description), as well as access to edit/deletion functions (see
below).

Figure 3. Visualising the properties of an episode.

Each episode is represented in the timeline by an icon specific to its type (work, school,
travel, etc.) that locates its start date, by its title and by a block representing its duration (if
applicable). A colour scheme is also used to visualise the difference between factual
episodes (in blue) and desired ones (in orange)3. The timeline itself uses different

3 One of the first user-testings of the new interface however indicates that a colour scheme would be
more useful if used to differentiate the type of an episode (e.g. blue for occupational episodes,
orange for professional, green for personal); a different graphical mechanism would be used for the
fact/desire distinction.

 7

background colours to represent the past, the future and the current date (as a light red bar
crossing the strips). Most of these visualisation parameters can be modified by the user,
using the customisation facility offered by L4All (see Figure 4). The scale of the main strip
can be modified (for example by switching to monthly or yearly increment of the timeline), as
well as the colours used to emphasise different aspect of a timeline (background colour for
the past and future, filling colours for factual and desired episode)4.

Figure 4. Customisation of the L4 All user interface, where the visualisation of the tim eline can

be personalised.

2.2 Accessing L4 All Functionalities
As mentioned above, the redesign of the interface was not only to address some serious
technical limitations but also to present a different usage paradigm. In the previous version
of L4All (see deliverable DC1 of the L4All project), a Flash-based interface presented the
users with some alternatives: visualising their timeline, searching for people, and searching
for other timelines. What we are trying to achieve with the current version is to put an
emphasis on the key element of the project, the timeline manipulation. In essence, every
functionality offered to the users beside the timeline manipulation is a satellite of it. Practice
reinforces that feeling, for example by allowing the result of a course search to be added to
the user’s timeline.

The current version of the system maintains all the previous functionalities (search for
people, timelines and courses by keyword) and provides access to the new ones (search for
similar timelines, enquire for recommendation). All functionalities are available in the left-
hand side menu in Figure 1 and are deployed in a popup window that maintains a
connection with the main page of the web site. By doing so, the central role of the timeline is
maintained, while still providing sufficient support to users for performing other tasks.

All the popup windows used to support secondary tasks have the same layout (see Figure 5
for a dialog box that allows users to modify their preferences). Most windows in the system

4 It has to be noted that several other aspects of the timeline could be customised. The current
selection is a trade-off between time and proof-of-concept.

 8

are form-based, using basic HTML widgets like edit box, drop-down box, radio and check
boxes, etc. to support editing of the required information, including buttons for validating the
form or closing the window5.

Figure 5. Modifying the user profile and preference s.

All the forms in L4All have a dual validation process. On the client-side, an AJAX script is
used to check, prior to validation, the syntactic validity6 of the most important fields in the
form: well-formed dates, well-structured email, existence of required information, etc. Then,
upon validation on the server-side, the appropriate servlet verifies the semantic validity of the
submitted information: password is correct for the registered user, episode existence before
modification or suppression, etc.

In order to limit the confusion arising from too many popup windows opening on the user's
screen, we deliberately limited their proliferation by enforcing one single external window. If
the user activates another L4All functionality from the main menu, the URL of the popup
window – if open – is modified to point to the new document. Some of the functionalities are
supporting one-off actions (such as profile modification) but others involve a more or less
complex sequence of actions (such as searching for timelines, which results in visualising
the result and handling individual timelines, see Figure 6). In such a case, all the steps to
accomplish the functionality take place sequentially in the popup window, maintaining the
possibility of navigating back one step using the browser’s history.

5 The first user-testing indicated a serious issue with validating or closing the form. The validation
button, as can be seen in the figure, usually lies below the form, whereas the close button, used to
shut down the window, was initially put in the footer of the form. This layout caused some
confusion, leading users to close the window by mistake. Corrections will be made accordingly.

6 Using Zapatec AJAX Form scripts (http://www.zapatec.com/), which are a fast and easy way to
perform validation, provide feedback, and display error messages that enrich the user's experience
while reducing the communications with the server behind the scenes.

 9

Figure 6. The query interface for searching for “pe ople like me” (left) and the result of the

search (right).

2.3 Feeding Back to the Timeline
The most important feature of the new design of the L4All interface is clearly the deliberate
attempt to integrate the various functionalities with the core of the system, i.e. the timeline.
Two aspects are particularly considered here: the exploitation of the search for particular
courses and the exploration of timelines of other users.

2.3.1 Exploiting Courses
As in the previous version of L4All, the user has the possibility to query databases for
appropriate courses, both internally (within the dedicated L4All course repository, used
mainly for evaluation purposes) and externally (using a remote connection to the LearnDirect
service). The result of a search is presented to the user, who has the possibility to explore
an individual course (see Figure 7, right). Upon finding a course they consider interesting,
users can include it in their timeline.

Figure 7. Searching for courses and exploring their details.

This action opens the "Create a New Episode" dialog box, where the necessary information
(dates, description, URL) can be added and/or modified (see Figure 8). Note that this
inclusion does not maintain any formal link with the courses database, as it consists of

 10

creating a whole new episode whose content is extracted from the course description. If the
course is later on removed from the database, the episode remains in the timeline.

Figure 8. Adding the selected course in the user's timeline.

2.3.2 Exploiting Timelines
When users are searching for other people or timelines (either performing a keyword-based
search or using the similarity-based “people like me” feature, see Figure 6), the outcome is a
list of other timelines that they can explore for their own purpose (e.g. inspiration for future
pathways, identification of a role model, "expert" background, etc.). In the previous version of
the system, the visualisation of another user’s timeline was separated from the visualisation
of the user's own timeline, i.e. it was taking place through a separate interface. As a result, it
didn’t allow users to simultaneously view two timelines and compare them. However, one of
the reasons for accessing someone else's timeline would be to find interesting or motivating
episodes to incorporate into your own timeline. There is, therefore, a strong incentive for
allowing users to visualise several timelines at the same time, an activity that the new
timeline widget clearly supports.

When prompted to show someone else's timeline (for example by clicking on an individual
items after having searched for “people like me”, see Figure 6), the corresponding timeline is
incorporated in the timeline visualisation widget as an extra strip (see Figure 9). Both the
user's and extra timelines can be synchronised by date or remain in their original form, at the
user's will, depending on the situation. Public episodes in the extra timeline are visible,
meaning that users can explore them and, ultimately, integrate them in their timeline7.

7 An intuitive way for doing this integration would be by dragging-and-dropping episodes, a feature
that the current timeline widget does not support. Expanding it would be too demanding resource-
wise, so an indirect method has been implemented: a new episode is created, as when adding a
course in the user's timeline, which is initially filled with information from the original episode.

 11

Figure 9. Displaying the user’s timeline (top) in p arallel to another user's timeline (bottom).

2.4 The Administrative Desktop
The last addition to the new interface is an administrative desktop that gives access to
restricted, password-protected parts of the system. The main restricted function of the
system is the ability to create special types of users. The default access to the system is for
"standard" users, lifelong learners who are given support in managing their educational and
professional pathways. MyPlan is introducing two other types of user:

• "Expert users" have exactly the same access to the system functionalities as “standard”
users but their timelines reflect essential pathways and are important for other users to
explore.

• "Recommendation users" are artificial users whose timelines act as templates for the
recommendation engine (see below, section 5.2).

Because of their sensitive nature, the creation of these two types of user is not available
from the main interface but is accessible through the administrative desktop (see Figure 10).

Other functions available in the administrate desktop include user management (listing,
editing and deletion), access to the L4All course system (adding new courses to the
database, deletion and edit) and the dedicated editor for the recommendations (see below).

 12

Figure 10. Registering an expert user in the admini strative desktop.

3 Modifications of the Back-End Engine
The changes at the back-end of the system fall in four categories: the overall architecture,
the user model and the episode and timeline models.

3.1 System Architecture
The overall system architecture remains the same, as documented in previous deliverables
of the L4All project (see for example L4All Deliverable D6.2 and Figure 11).

Tomcat 5.0.28

Course
Metadata

Java Beans

User
MetadataISIS Sequencing Service

LearnDirect Search Service
Web Services

Portal

L4ALL Pages
(DHTML – Javascript)

Registration
Pages

Figure 11. L4 All System Architecture.

Changes were introduced at the level of servlets in order to operate a clearer distinction
between the client-side and the server-side of the L4All system. All servlets have been
separated into two sets (see Figure 12):

• The Service Servlets are an implementation of the different web-based services
provided by L4All (e.g. GetTimeLineDetails, GetCourseDetails, etc.). Their inputs
have been normalised and output certified as proper XML documents.

• The Interface Servlets are an implementation of the server-side response to the
different parts of the L4All interface and are basically called from the relevant JSP
documents.

Part of this clearer distinction means that some of the functionalities of L4All are associated
with two distinct servlets, one for the server-side service, outputting an XML document

 13

containing the result of the request (for example SearchSimilarServlet is handling queries for
searching for “people like me”) and one for the client-side interface generation (for example,
ProcessSearchSimilar is gets the search parameters typed by the user in the query form,
calls the SearchSimilarServlet to retrieve the XML document, parses this document and
generates an appropriate web-page). A partial flowchart, representing the most important
functionalities of the L4All system, can be seen in Figure 13.

Figure 12. The Servlets (interface and service) of the L4 All system.

14

F

igure 13. A
n extract of the flow

chart of the L4
A

ll system
.

AuthenticateUser

Servlet.java

register.jsp

login.jsp timeline.jsp

HTTP

index.jsp

HTTP

HTTP HTTP

logout.jsp HTTPHTTP

AddNewEpisode

Servlet.java

ProcessCourseDetails

Servlet.java

GetCourseDetails

Servlet.java

JAVA XML

searchCourse.jsp

HTTP

HTTP

showCourseDetail.jsp

DHTML

HTTP

ProcessSearchCourse

Servlet.java

SearchCourses

Servlet.java

JAVA XML

DHTML

showCourses.jsp

HTTP

HTTP

ProcessAuthUser

Servlet.java

JAVA XML

DHTMLHTTP

createEpisode.jsp

HTTP

XML

HTTP

ProcessEpisode

Servlet.java

DHTMLHTTP

JAVA

searchSimilar

Timeline.jspHTTP

SearchSimilar

Servlet.java

XML

ProcessSearchSimilar

Servlet.java

DHTMLHTTP

JAVA

showSimilar

Timeline.jsp

login.jsp login.jspJSP document (in the browser main window) JSP document (in a popup window)

HTTP DHTML

Java ServletTest.java

Communication protocol Output Format

JAVASCRIPT

 15

3.2 User Model
The following properties have been added to the RDF definition of a user model:

• Status: indicates if the current model represents a “standard” user (value: “user”), an
expert (value: “expert”) or a recommendation provider (value: “template”).

• Year of Birth: the age of the user is now deprecated, both for ethical and practical
reasons. L4All is now using the year of birth of a user to inform lower and upper limits of
a timeline (value: four-digit integer).

3.3 Episode Model
The following properties have been added to the RDF definition of an episode:

• Status: indicates whether an episode in a timeline is considered by the user as a fact
(value: “fact”) or a desire (value: “wish”). Note that in the case of a recommendation, this
property takes the meaning of prerequisite and aspiration (see below).

• Primary Classification: contains the identifier of a single element, locating this episode
within the first classification (value: a four-part string “#.#.#.#”, see below).

• Secondary Classification: contains the identifier of a single element, locating this
episode within the second classification (value: a four-part string “#.#.#.#”, see below).

The definition of episodes in L4All has also been refined (see Table 1):

• Introducing an explicit separation between personal, professional and educational
episodes

• Normalising the (unique) identifier of each type of episode

• Specifying whether episodes have a duration or are considered instantaneous.

Four distinct classifications8 have been used in L4All to further specify the exact nature of
some of the episodes:

• Education episodes are specified primarily by a subject (SBJ) and secondarily by a
qualification level (NQF).

• Work/Voluntary episodes are specified by an industry sector (SIC) and an
occupation/position (SOC)

• Business episodes are specified by an industry sector (SIC).

At the current stage, it is assumed that episodes of other types do not require any further
classification as their nature does not justify any further discrimination9. As much as possible
we have maintained the structure and identifiers of each of the above taxonomies but, for
deployment purposes, we have limited their depth to four levels. Consequently, each
element in the taxonomies can be uniquely represented by four-digit identifier (see Figure

8 As much as possible, we intended to use standard classifications, whether governmental or
institutional. The (non definitive) choice for the current system is based on these four
classifications: the Standard Industrial Classification (SIC), the Standard Occupational
Classification (SOC), the National Qualification Framework (NQF) and the Labour Force Survey's
Subject of Degree (SBJ). For details on the encoding and evolution of these standards, see the
Labour Force Survey User Guide (http://www.statistics.gov.uk/downloads/theme_labour/Vol5.pdf).

9 For example, we are assuming that disability episodes will be considered as a self-defined item,
whatever the nature of the disability. The evaluation and a long-term usage should indicate whether
such assumption can be maintained or finer distinctions are needed for particular types of
episodes.

 16

14), each digit uniquely identifying a precise sub-level in the classification “tree”.

Table 1. The different episodes available in the L4 All system and their classification

ID Type Description Duration 1st 2nd
Educational Episodes
Sc School Attended school ���� SBJ NQF

Cl College Attended college ���� SBJ NQF

Un University Attended University ���� SBJ NQF

Dg Degree Obtained a degree SBJ NQF

Cs Course Attended a particular course ���� SBJ NQF

Occupational Episodes
Wk Work Employed ���� SIC SOC

Vl Voluntary Voluntary work in charity/voluntary organisation ���� SIC SOC

Bs Business Setup a business ���� SIC

Ml Military Attended military service ����

Re Retired Retired

Ue Unemployed Unemployed ����

Cr Carer Homecarer ����

Personal Episodes
Mv Moved Moved to a different location

Tv Travel Spent some time abroad ����

Ch Child Birth in the family

Ad Adoption Adopted a child

De Death Death in the family

Ma Married Got married

Se Separated Divorced

Ds Disability Developed a (permanent) disability

Il Illness Developed a (temporary) illness ����

Other Episodes
Ot Other Any user-defined episode not covered previously ����

<xml version="1.0" encoding="UTF-8"?>
<list>
 <item>
 <label>Unknown</label>
 <attribute name="id">0.0.0.0</attribute>
 </item>
 <item>
 <label>NQF Level 6</label>
 <attribute name="id">7.0.0.0</attribute>
 <list>
 <item>
 <label>Bachelor Degree (with Honours)</label>
 <attribute name="id">7.1.0.0</attribute>
 </item>
 <item>
 <label>Graduate Certificate</label>
 <attribute name="id">7.2.0.0</attribute>
 </item>
 <item>
 <label>Graduate Diploma</label>
 <attribute name="id">7.3.0.0</attribute>
 </item>
 </list>
 </item>
</list>

Figure 14. Extract of the XML encoding of the quali fications classification.

 17

3.4 Timeline Model
The following property has been added to the RDF definition of a timeline:

• Status: as with the user’s status above, indicates if this timeline belongs to a “standard”
user (value: “user”), an expert (value: “expert”) or a recommendation provider (value:
“template”).

4 Similarity Metrics
The initial prototype of the L4All system supported several search functionalities over users
and their timelines. Two limitations of this approach were identified during the first piloting
phase. First, all the search functionalities were keyword-based, targeting the various fields of
the User Profile, Learning Profile and Timelines, and therefore limited in their scope. In
particular, searching on timelines returns matches based solely on the occurrence of the
keywords present in one or several episodes but cannot exploit the overall structure of the
timeline. Second, the results of any search were not personalised according to the particular
user performing the search. An alternative approach was needed, that could take into
account both these issues: in other words, some form of comparison or similarity measure
between a user's timeline and the rest of the timelines in the L4All repository.

String metrics offer such a possibility. String metrics (also referred to as similarity metrics)
have been widely used in information integration and in several fields of applied computer
science, more rarely in the context of Intelligent Tutoring Systems, where they have been
used in the REDEEM system [ref?] to compare alternative sequences of instructional
activities as produced by authors.

4.1 Timeline Encoding
In the context of the L4All timelines, the main requirement for using similarity metrics is to
encode a time-based sequence of records into a token-based string. For this purpose, we
have made four simplifying assumptions at the outset (the implications of these assumptions
for users will be explored in our forthcoming evaluation activities):

1. The precise duration and dates of an episode have no particular significance. This may
seem strange for a time-dependent data structure but the relevance and usage of such
information for searching for “people like me” is ambiguous. Should we consider two
learners having done the same university degree but at different dates similar or not?
Should we consider them more different if one of them has taken twice as long as the
other (being part-time for example)? Or is it enough, at some level, to consider them
similar since both of them have done this particular degree? In the absence of evidence
supporting one point of view against the other, we decided, initially, to ignore this
information. Only each episode's relative time-stamp (i.e. its position in time compared to
the other episodes in the timeline) is used in an attempt to “linearise” the timeline by
ordering the episodes in chronological order.

2. Gaps between episodes have no particular significance unless explicitly expressed as an
episode. The problem posed by gaps in timelines is the lack of explicit explanation for
their occurrence and therefore for their significance for the timeline. Again, in the
absence of such information, they are ignored.

3. Some categories of episode may have no role to play in defining “people like me”. The
purpose of a timeline is for learners to record every episode of their background that may
have an impact on their learning pathways. For example, personal episodes such as
marriage, illness, relocation, etc. are important as they may have a clear influence on the
decisions made for personal development (e.g. a course at a particular learning
institution may have been followed because of relocation to a particular city). However,
this does not necessarily mean that such episodes are a prerequisite or a necessary
condition for reaching a particular stage in someone else's development. Their

 18

importance while searching for role models, inspiration, or “people like me” are therefore
ambiguous and subjective. Therefore, whether to include or not particular categories of
episode in the similarity matching should be left to the user to specify.

4. The exact classification of an episode may not be significant in defining “people like me”.
As described earlier, some of the most important episodes in the timeline (educational
and work-related episodes) use a specific attribute to precisely describe their instance,
e.g. working as a researcher in computer science. However, taking such a fine-grained
description of an episode might not be useful in searching for “people like me”, as it may
make more sense to consider that a researcher (without a precise field) is someone that
should be considered “like me”. Therefore the level of specialisation of episodes should
also be left to the user to specify.

Using these assumptions, it is now relatively straightforward to generate a token-based
string representing the timeline. Each episode of the timeline is encoded as a string token
composed of a two-letter unique identifier of the category of the episode (e.g. Cl for a
College episode, Wk for a Work episode, see Table 1) and two four-digit codes classifying
the exact instance of this episode (as described in the previous section). Note that, in order
to maintain a consistent pattern for the token's encoding, nonexistent or unspecified
classifications are encoded as 0.0.0.0.

Combining the two first assumptions mentioned above means that no time information is
used to encode episodes, only their relative position matters10. Filters are then applied to the
string of tokens to remove episodes that should not be considered in the current similarity
search, as well as limit the depth of their classification. In the latter case, the use of the
coding system for the classification facilitates that process: digits below the specified depth
are replaced by 0, replacing the specific classification by a more general parent.

4.2 A Comparison of String Metrics
We have conducted a study over a set of string metrics that are part of the SimMetrics JAVA
package; this is an open source extensible library of metrics that provides real number-
based similarity measures between strings, allowing both normalised and un-normalised
output11. The SimMetrics package contains about 20 different metrics, some of them
customisable by using user-defined cost functions and tokenisers. Not all metrics are
applicable in our context, since some are tailored for working on a particular application
domain (linguistic for example) and require strings that are incompatible with our encoding of
timelines.

Table 2 shows a set of synthetic timelines used in our comparison study. They are
deliberately simplistic in their structure, as the purpose of this comparison was to identify
general trends arising from the various similarity metrics, rather than evaluating their intrinsic
power of discrimination. The Source timeline is a string of four episodes of different type:
college (Cl00), university (Un00), move (Mv00) and work (Wk00). Each episode has been
encoded as a token, using the scheme described in the previous section. For the sake of
clarity, and since this comparison does not rely on the full power of discrimination of the
scheme, the episode classifications have been reduced to a single digit each (i.e.
representing 0.0.0.0 as 0).

The target timelines represent a variety of alterations of the Source timeline that could occur
in real-life situations: a totally similar timeline (i.e. the same sequence of episodes), a

10 With an arbitrary decision as to their ordering if multiple episodes coincide in time.
11 The SimMetrics library (http://www.dcs.shef.ac.uk/~sam/simmetrics.html) is the Java package

ultimately used in the project; tests have been also made on a similar project, SecondString
(http://secondstring.sourceforge.net/)

 19

reordered timeline (i.e. the same episodes but totally reordered), adding an extra episode,
removing an existing episode, substituting an episode by another one. Note that the set of
target timelines listed in the table only represent the most representative timeline of each
group. In order to test the behaviour and consistency of the metrics, all possible
combinations were generated for each group (e.g. timelines representing the addition of a
new episode were generated considering every possible position in the Source timeline).

Table 2. List of encoded timelines used for the met rics comparison.

ID Description Encoding

Source The original timeline used as the source for the similarity
measure

Cl-00 Un-00 Mv-00 Wk-00

Id A timeline similar to the source. Cl-00 Un-00 Mv-00 Wk-00

Re
A timeline containing the same episodes as the source
but in a totally different order (i.e. no episode is at the
same position in the string).

Un-00 Wk-00 Cl-00 Mv-00

AdW A new work episode (similar to an existing one) is added
to the timeline.

Cl-00 Un-00 Mv-00 Wk-00 Wk-00

AdE
A new episode (different from all existing ones) is added
to the timeline.

Cl-00 Un-00 Mv-00 Wk-00 Bs-00

RMw The last episode is removed from the source timeline. Cl-00 Un-00 Mv-00

RMU One of the episodes of the source timeline is removed. Cl-00 Mv-00 Wk-00

SBE
One of the episodes of the source timeline is substituted
by a new one (different from all existing ones).

Cl-00 Un-00 Mv-00 Bs-00

SBU
One of the episodes of the source timeline is substituted
by an existing episode.

Cl-00 Un-00 Mv-00 Un-00

SBW One of the episodes of the source timeline is substituted
by a variant of an existing episode.

Cl-00 Un-00 Mv-00 Wk-10

4.3 Results and Interpretation
Table 3 summarises the results of the different similarity measures applied between the
Source timeline and every target timeline. The values shown in the table do not represent
the distance between the two strings, but rather their normalised similarity, i.e. the ratio
between the calculated distance and the maximum distance. As mentioned earlier, the main
aim of this comparison was not to focus on individual measures for assessing their accuracy
but to extract general conclusions regarding their behaviour when confronted with particular
configurations. From these results, several conclusions can be drawn. First, all the similarity
measures are indeed able to recognise complete similarity between timelines (as indicated
by all 1 in the ID column). More interestingly, three groups of metrics emerge, as listed in
Table 3.

Table 3. The normalised similarity between the sour ce and the test timelines.

 ID RE AdW AdE RMw RMU SBE SBU SBW

Levenshtein 1 0 0.8 0.8 0.75 0.75 0.75 0.75 0.75

Needleman - Wunsch 1 0 0.8 0.8 0.75 0.75 0.75 0.75 0.88

Jaro 1 0.72 0.93 0.93 0.92 0.92 0.83 0.83 0.83

Matching Coefficient 1 1 0.8 0.8 0.75 0.75 0.75 0.75 0.75

Euclidean Distance 1 1 0.84 0.84 0.8 0.8 0.75 0.75 0.75

Block Distance 1 1 0.89 0.89 0.86 0.86 0.75 0.75 0.75

Jaccard Similarity 1 1 1 0.8 0.75 0.75 0.6 0.75 0.6

Cosine Similarity 1 1 1 0.89 0.87 0.87 0.75 0.87 0.75

Dice Similarity 1 1 1 0.89 0.86 0.86 0.75 0.86 0.75

Overlap Coefficient 1 1 1 1 1 1 0.75 1 0.75

 20

The first group includes transformation-based metrics like Levenshtein, Jaro and
Needleman-Wunsch that are able to discriminate between the basic operations of string
manipulation (copy, substitution, addition, deletion). The non-zero result for the Jaro distance
in the RE column can be explained by a threshold used for determining matching tokens
(see the documentation of this metric in the Appendix); our test strings are not long enough
(only four tokens) to allow proper discrimination. All these metrics do not take into
consideration the position of the token involved in one of the string manipulations (whatever
the location of the added or substituted episode, the scores are the same). The only
exception is the Needleman - Wunsch distance, which gives a different score when a variant
of the initial episode (i.e. same category but different classification) is substituted (score of
0.88 in SBw, instead of 0.75 in SBe and SBu). This is due to the use of specific gap cost and
distance functions that can be tailored to the particular nature of the data involved in the
similarity measure and therefore could be adjusted for our particular use of the timelines.

The second group of metrics includes vector-based metrics such as Block Distance,
Euclidean Distance and Matching Coefficient that are not able to discriminate between re-
ordered strings, as indicated by 1 in the RE column. Whatever the order of the tokens in the
string, both source and target are considered to be identical since they contain the same set
of tokens. As with the metrics in the previous group, the results for addition, substitution and
removal of tokens are position-independent.

The third group of metrics includes the rest of the vector-based metrics (Jaccard, Cosine,
Dice Similarities and Overlap Coefficient) which, as with the previous group, do not
discriminate between reordered tokens. Moreover, this group also fails to take into account
the duplication of tokens in the string, as exemplified by the scores of 1 in the Adw column
(i.e. adding an episode that is already existing in the timeline) or the different scores for the
SBu column (i.e. substituting an episode with one that is already existing, resulting in fact in
the deletion of this episode). Once again, this is because of the set-based algorithms used
for these metrics, in particular the use of intersection/union procedures rather than
summation as in the previous group. This is also reflected by the fact that substitution also
depends on the nature of the episode substituted (the SBu column give scores different from
the other substitutions). In this group, the Overlap Coefficient is an extreme case, as it
basically measures whether the source string is a subset of the target one (or the converse).

What the comparison above shows is that different similarity metrics offer different degrees
of support for the basic operations of string manipulation: copy, substitution, addition or
deletion of a token. The important point here is that the comparison does not highlight one
particular metric as being more useful or accurate for our purpose, precisely because our
purpose (or, rather, the user's) is unknown. Our encoding assumptions encompass a wide
range of users' behaviour regarding the way they perceive the “people like me” functionality.

5 The Personalisation Engine
The personalisation engine of the L4All systems is a set of functionalities that covers
different features available to lifelong learners: searching for timelines of "people like me",
searching for recommendations of what to do next and customisation of the system.

5.1 Searching for Timelines of “people like me”
In order to validate assumptions presented in section 4.1, a dedicated interface for the
searches was therefore designed and implemented. It provides users with a three-step
process for specifying their own definition of “people like me”. The first step of a user's query
specifies those attributes of the user's profile that should be matched with other users'
profiles (age, qualification, location, etc.) and acts as a filtering of the possible candidates
before application of the similarity comparison on the timelines. The second step of the
query specifies which part(s) of the timeline should be taken into account for the similarity
comparison (currently by selecting the appropriate categories of episode). The final step

 21

specifies the nature of the similarity measure to be used (i.e. depth of episode classification
and metric). Once a definition of “people like me” has been specified by the user, the search
returns a list of all candidate timelines, ranked by relevance (i.e. their normalised similarity
measure). Users now have the possibility to access any returned timelines and explore
them.

This first -- but mainly artificial -- approach for offering the “people like me” functionality gave
us the possibility to accumulate information about usage and expectation from users. It has
offered us some insights about the context and relevance of particular configurations and
how specific aims -- like looking for inspirational timelines or learning recommendations --
should be supported.

Figure 15. Searching for “people like me”.

A second – more rooted – approach was to redefine the existing search functionalities
offered by the L4All system (i.e. keyword-based search with respect to users’ profiles and
timelines). As mentioned before, these searches were not personalised: every search using
the same keywords will return the same list of matches, whoever the user might be. The
current redefinition of the search procedure removes the artificial distinction between
searching with respect to users' profiles and users' timelines by providing a single interface.
The results of the search, i.e. a set of matching timelines, are presented using the selected
ranking criteria (i.e. one of the selected similarity metrics).

5.2 Recommendations
Some of the changes made in the L4All data structures (e.g. “template” timelines, fact vs.
wish episodes, etc.) have been made in order to support a recommendation mechanism,
allowing learners to explore and plan future (learning) activities.

The driving principle for designing a recommendation engine was to re-use the existing data
structures, in particular the timeline. The hypothesis we made is to consider the timeline as
suitable for representing both learners’ own pathways AND recommendations.

Recommendations are considered as a special case of timelines which, instead of
representing the concrete pathway of a learner, represent an abstract template of a possible
pathway that can be instantiated in a specific context.

Recommendations are built – like any other timeline – by adding episodes of a specific
nature. But two aspects are fundamentally different:

1- Episodes in a recommendation timeline are divided into two groups:

 22

a. Aims which represent the goal or outcome of following that particular
recommendation

b. Prerequisites which represent every mandatory step in achieving the aims.

2- Unlike a learner’s timeline, time information is considered relative rather than absolute.
Start dates are used to locate episodes in relation to each other (i.e. episode 1 HAS to
take place before episode 2) while duration indicates the MINIMUM amount of time spent
on a particular requirement.

Here are two examples of such recommendations, represented as timelines:

Both have for their aim getting a position as an IT Manager (represented by a Work
episode, in pink). The first recommendation has two prerequisites: a Master in Computer
Science (represented by a University episode, in blue) and two years of experience as an
IT Technician (a Work episode, in blue). The second recommendation has only one
prerequisite: 4 years of experience as an IT Technician (a Work episode, in blue).

As mentioned above, the dates used for each episodes, do not really matter in an absolute
sense. The Master in CS episode, defined as starting in 2001, could have been defined at
any other dates. What matters is that this episode is two years long and is taking place
before the IT Technician one.

Note that the aim of both recommendations (IT Manager) is likely to be open-ended, as
there is no significance attached to how long such a position should last, but it is displayed
with a duration for the sake of uniformity.

Put together, the idea of these recommendations is to express the fact that, in order to
become an IT manager, one has to have either 4 years of experience or a Master in
Computer Science and two years of experience.

The engine starts computing the match between a learner’s timeline and each
recommendation. This match is based on the similarity distance – as used in the search for
“people like me” functionality – between the timeline and the prerequisites of the
recommendation. Only the prerequisites of the recommendation timeline are used in the
matching process, as we are looking for relevant experience or requirement to propose a
relevant pathway.

The idea is for the learner to inspect one recommendation at a time, by displaying it
simultaneously with his own timeline. By doing so, the abstract template that the
recommendation represents is instantiated in the context of his timeline, by matching every
relevant episode.

In the case of the first recommendation, both requirements are met, i.e. matched with similar
episodes in the learner's timeline. The aim of the recommendation, once inspected by the
learner can be extracted and proposed as a wish episode to be added in the future part of
his timeline.

 23

Such matching and aligning of timelines is made possible by the use of one particular set of
distance metrics, the Needleman – Wunsch metrics. This metric is measuring similarity
between two token-based strings by calculating the minimal number of changes (i.e. adding
a token, removing a token, and modifying a token) necessary to transform one string into the
other:

where d is an arbitrary distance function between two tokens (typically returns 1 if the
tokens are identical, 0 if not) and G the gap cost function.

More important, during this matching process, it also builds a transformation matrix that can
be used to backtrack the computation and find the longest common subsequence between
the two strings.

The Needleman-Wunsch algorithm finds the optimal alignment of a pair of sequences by
optimising a score function, that is, each possible alignment is scored according to a score
function, and the alignment that yields the highest score is the optimal alignment of pair of
sequence. If the score of more than one of the possible alignments equals the highest score,
there is more than one optimal alignment of the pair of sequences.

The algorithm builds a substitution matrix that represents the cost of editing one string into
the other, using the three basic operations:

• Copy character from string1 over to string2 (cost d)
• Substitute one character for another (cost d)
• Delete a character in string1 (cost G)
• Insert a character in string2 (cost G)

Let's assume we have a learner's timeline encoded as AJC (i.e. containing episode A, J and
C in this order) and a recommendation encoded as ABCN . The result of running the
similarity metric on both strings can be seen in Figure 16. The final score of 2 (in the bottom-
right corner of the table) indicates that a minimum of 2 edit operations are needed to
transform one string into the other.

By backtracking the edit distance computation (materialised by the lines in Figure 16), two
possible alignments are found (the - character indicates a gap in the string):

AB-CN A-BCN

A-JC- AJ-C-

The two alignments came from the fact that, after aligning the tokens A, the next edit
operation can be inserting B then J (in blue) or inserting J then B (in red).

 24

Figure 16. The Needleman – Wunsch distance matrix.

These alignments tell us four things:

1. The longest common subsequence (i.e. the sequence of tokens common to both strings)
is AC.

2. How the recommendation's abstract timeline can be instantiated and mapped to the
learner's timeline (i.e. by matching the elements of the longest subsequence).

3. The parts of the recommendation that are NOT mapped to the user’s timeline and
therefore need to be moved from the requirements to the aims of the recommendation
(e.g. episodes B and N).

4. The parts of the user’s timeline that are NOT mapped to any of the recommendation’s
timeline. This has no impact on the recommendation process, as it conveys elements of
the user's pathway that are not relevant to the current recommendation.

This functionality is still under development and is not yet ready for the upcoming
evaluations. It will be described in greater detail in a later deliverable.

5.3 Customisation of the L4 All System
The customisation currently works at different levels of the system:

• At the GUI level, where the users can modify the colour scheme used for the
visualisation of their timeline and its episodes (see Figure 4)

• At the service level, where previous parameters of a search form are stored and
reused for future runs (see Figure 6).

All information is stored in time-limited cookies on the users' browser. Persistence of
information across sessions has not been addressed yet, as it will require the extension of
the User Model.

6 Conclusion
The development of the first version of the L4All personalisation engine has now reached
completion and will be used for the first phase of evaluation. Since the recommendation
mechanism will require significant work in specifying and implementing a set of actual
recommendations, its completion has been postponed to after this first phase of evaluation,
in order to focus first on the new interface and the search for "people like me".

This report has covered the following development activities:

• Redesign of the GUI of the L4All system, using DHTML/javascript for the front-end and
JSP/servlet for the back-end.

 25

• Redesign of several aspects of the ontology underlying the L4All system in order to
accommodate the new functionalities: different categories of user (learner, expert,
institution), a two-axis taxonomy of events, etc.

• Design and implementation of a similarity measure engine for the comparison of
learners’ timelines. The mechanism is based on converting timelines into strings of
comparable tokens and using string metrics for ranking them.

• Design and implementation of a recommendation engine, using the timeline formalism
for representing requirements/recommendations and the similarity engine for proposing
matches.

• Design and deployment of several customisation procedures (colour/shapes used in the
timeline visualisation, bookmarks for interesting timelines, etc.)

The significant effort spent in redesigning the interface comes from the fact that providing a
personalised mechanism for searching for "people like me" is only a small – but important –
part of supporting lifelong learners in planning their personal development. A crucial aspect
of this support is to make sure that learner can exploit the information returned by the
system. One of the key assumptions for better support is to allow learners to simultaneously
access several timelines in order to compare them.

The upcoming evaluation will tell us how the design decisions reported in this document
have been assessed by two target groups of learners.

7 References
S.E. Ainsworth, D.D. Clarke, R.J. Gaizauskas (2002). Using edit distance algorithms to

compare alternative approaches to ITS authoring. In S. A. Cerri & G. Gouardères & F.
Paraguaçu (Eds.), Proceedings of the 6th International Conference ITS 2002 (LNCS
2363), pp. 873-882. Berlin: Springer-Verlag.

D. Laurillard, A. Poulovassilis, G. Magoulas, S. de Freitas, G. Papamarkos, N. Van Labeke
(2007). WP3: MyPlan Personalisation Specification. MyPlan Deliverable D3.1 (available
at http://www.lkl.ac.uk/research/myplan).

G. Papamarkos, A. Poulovassilis, G. Magoulas (2005). Final Technical Report. L4All
Deliverable D6.2 (available at http://www.lkl.ac.uk/research/l4all).

 26

8 Appendix: List of similarity metrics
The following list briefly described the similarity metrics used in the document and
implemented in the L4All system.

• Levenshtein. This is the basic edit distance function whereby the distance is given
simply as the minimum edit distance which transforms one string into the other. Edit
operations are listed as follows:

where d is a function whereby d(i; j) = 0 if i = j, d(i; j) = 1 otherwise.

• Needleman – Wunsch. This is similar to the basic Levenshtein distance, by adding a
variable adjustment to the cost of a gap, i.e. insertion and deletion, in the distance metric:

where d is an arbitrary distance function between two tokens and G the gap cost
function. Note that the Levenshtein distance can simply be seen as the Needleman -
Wunsch distance with a gap cost of 1.

• Jaro. The Jaro distance metric states that given two strings X and Y , their distance is:

where m is the number of matching tokens and t is the number of transposition. Two
characters from X and Y respectively, are considered matching only if they are not
farther than max(|X|;|Y|)/2-1. Each token of X is compared with its entire matching token
in Y. The number of matching (but different) characters divided by two defines the
number of transpositions.

• Matching Coefficient. The Matching Coefficient is a very simple vector based approach
which simply counts the number of terms, (dimensions), on which both vectors are non
zero. This can be seen as the vector based count of co-referent terms.

• Euclidean Distance . This approach again works in vector space similar to the matching
coefficient and the dice coefficient, however the similarity measure is not judged from the
angle as in cosine rule but rather the direct Euclidean distance between the vector
inputs. Below is the standard Euclidean distance formula between vectors X and Y:

• Block Distance . This is a vector based approach so where 'q' and 'r' are defined in n-

 27

dimensional vector space The L1 or block distance is calculated from summing the edge
distances.

• Jaccard Similarity . This is another token based vector space similarity measure like the
cosine distance and the matching coefficient. Jaccard Similarity uses word sets from the
comparison instances to evaluate similarity. The Jaccard similarity penalises a small
number of shared entries (as a portion of all non-zero entries) more than the Dice
coefficient. Each instance is represented as a Jaccard vector similarity function. The
Jaccard between two vectors X and Y is

• Cosine Similarity . Cosine similarity is a common vector based similarity measure similar
to dice coefficient, whereby the input string is transformed into vector space so that the
Euclidean cosine rule can be used to determine similarity.

• Dice Similarity . Dice coefficient is a term-based similarity measure (0-1) whereby the
similarity measure is defined as twice the number of terms common to compared entities
divided by the total number of terms in both tested entities. The Coefficient result of 1
indicates identical vectors whereas a result of 0 equals orthogonal vectors.

• Overlap Coefficient . This is a measure whereby if a set X is a subset of Y or the
converse then the similarity coefficient is a full match. Overlap coefficient is defined as:

