Deliverable N°: D31

Integration of Student
Model in LEACTIVEMATH

Version 1

The LEACTIVEMATH Consortium
December 2005

Main Authors:

Paul Brna, Nicolas Van Labeke,
Rafael Morales, Helen Pain,
Kaska Porayska-Pomsta

Project funded by the European Community under the
Sixth Framework Programme for
Research and Technological Development

Deliverable D31

LEACTIVEMATH(IST-507826)

Integration of Student Model in LEACTIVEMATH

Project ref. no.

IST-507826

Project title

LEACTIVEMATH- Language-Enhanced,
User Adaptive, Interactive elLearning for
Mathematics

Deliverable status

Restricted

Contractual date of delivery

December 31st 2005 (Month 24)

Actual date of delivery

January 31th 2006

Deliverable title

Integration of Student Model in
LEACTIVEMATH

Type Report
Status & version 1
Number of pages 24

WP contributing to the WP4
deliverable

WP/Task responsible WP4 /4.5

Author(s)

Paul Brna, Nicolas Van Labeke,Rafael
Morales, Helen Pain, Kaska Porayska-
Pomsta

EC Project Officer

Colin Stewart

Keywords

Situational modelling, motivation, Bayesian
networks.

O©LEACTIVEMATHConsortium 2005

Page 2 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)

Integration of Student Model in LEACTIVEMATH

Contents

Executive summary
1 xLM architecture and information exchange

2 Learner Model
21 Events
22 Metadata e
2.3 Beliefs. e

3 Open Learner Model
3.1 Communications with LEACTIVEMATH
3.2 Integration with LEACTIVEMATH Front-end
321 Deploymentofthe OLM
3.2.2 Suggestions to the Tutorial Component

4 Situational Model
5 Learner History

6 The view from LEACTIVEMATH
6.1 Integration with the LEACTIVEMATH front-end and GUI
6.2 Integration by the Tutorial Component

7 Outstanding issues

Bibliography

12
12
13
13
15

17

19

O©LEACTIVEMATHConsortium 2005 Page 3 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

Executive summary

This report provides a description of the integration of the Extended Learner
Model (xXLM) into LEACTIVEMATH, replacing the earlier ACTIVEMATH learner
model component. It includes a brief description of xLM architecture in relation
to LEACTIVEMATH and how information is exchanged between them via event
messaging and procedure calls, followed by details of how each one of xXLM com-
ponents interact with LEACTIVEMATH.

xLM simple interface allows other LEACTIVEMATH components to request in-
formation about beliefs held in learner and situational models, including the ev-
idence supporting them. They can also request decisions on what is the more
likely status of learner states or dispositions, suggestions on how much auton-
omy and approval to give to learners and details of the learner history. For more
content-oriented components, xLM is able to provide beliefs and decisions about
learner capabilities and dispositions in relation to individual content items, such
as an explanation or an exercise.

Most of xLM is integrated into LEACTIVEMATH even at the level of source code,
meaning that most of xXLM source code is included in LEACTIVEMATH source
and it is compiled and deployed using the same mechanisms. The exception
to the rule is the Situational Model component, whose source code is currently
distributed, compiled and deployed independently.

O©LEACTIVEMATHConsortium 2005 Page 4 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)

Integration of Student Model in LEACTIVEMATH
Situational
Model

xLM

)
Event - - -
» Manager @

LeActiveMath
Event Manager

|

|
. Learner
—_——_— N XM'I&'PF:PC R - History

(\ ,
| Other |

)
«—
OLM
lComponents | JOM e - @
_ __J —

\ Manager /

< » Procedure Call
. EEEREEEE R » Event Publication
<4<¢——p)p Remote Call using XML-RPC

Figure 1: Overall architecture of xLM. Solid arrows represent procedure (method)
calls and dotted arrows represent event publication. Double-headed arrows stand
for remote procedure calls using XML-RPC.

1 xLM architecture and information exchange

The Extended Learner Model is composed of three big parts: diagnostic, open
learner modelling and management. The diagnostic components and the man-
agement components of XLM are described in deliverable D30 (Andres et al.,
2005b). The Open Learner Model and related components are described in de-
liverable D29 (Brna et al., 2005). This report focuses on describing how xLM as a
whole and each one of its core components—Situational Model, Learner Model,
Open Learner Model and Learner History—integrate into LEACTIVEMATH.

The overall architecture of xXLM is depicted in figure 1. The arrows connect-

O©LEACTIVEMATHConsortium 2005 Page 5 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

ing components represent information interchange between components. There
are two basic types of information interchange, as explained in deliverable D8
(Libbrecht et al., 2005): procedure (method) calls, represented as solid arrows, and
event publications, represented by dotted arrows. In some cases information in-
terchanges of both types occur between two components, and a dot-dash type of
line is used to represent them in the figure.

The main information interchange point between xLM and the rest of LE-
ACTIVEMATH is the xXLM Manager, which interchanges events (dotted line)
with the LEACTIVEMATH Event Manager and provides a joint application
programming interface (API) for the core diagnostic components of xLM:
the Situational Model (SM), the Learner Model (LM) and the Learner His-
tory (LH). A subset of this APl is available to remote LEACTIVEMATH com-
ponents via XML-RPC, although xLM relies completely on LEACTIVEMATH
for provision of connectivity.

The xXLM Manager acts as a local event manager for xXLM. In other words,
it collects all external events and distributes them locally, and almost all
xLM components send their events to xXLM Manager for it to distribute
them both locally and to the LEACTIVEMATH Event Manager. The only
exception is the Situational Model, which sends its events directly to the
LEACTIVEMATH Event Manager (see below).

Procedure calls between xXLM components and other components in LE-
ACTIVEMATH are indicated in figure 1 by the solid arrow on the left of
the xXLM Manager. Nevertheless, access to LEACTIVEMATH components
is more spread inside XLM than showed in the figure. Details of it will be
provided in sections devoted to the individual components of xXLM, when
relevant for explanations of their integration into LEACTIVEMATH.

The Situational Model (SM) is executed as an independent process, not nec-
essarily on the same computer where xLM is executed. SM integration into
xLM happens through a proxy inside XLM that receives all information and
requests send to SM. On the other hand, SM sends its events directly to the
LEACTIVEMATH Event Manager.

The Open Learner Model graphical user interface (OLM GUI) is delivered
to be executed on the learner’s computer, which is generally distinct from
the server that executes LEACTIVEMATH, xXLM and SM. However, a big
part of OLM still runs on the server side—see (Brna et al., 2005) for details.

All event interchange in between xXLM components occurs through the xXLM
Manager, as depicted in figure 1. Information interchange via method calls
also exists between xXLM components, sometimes directly and other times
indirectly through the xLM Manager APL

O©LEACTIVEMATHConsortium 2005 Page 6 of 24

Deliverable D31

Integration of Student Model in LEACTIVEMATH

LEACTIVEMATH(IST-507826)

Table 1 summarises all the events currently implemented in LEACTIVEMATH
and indicates which components of the Extended Learner Model fire or make

use of them.

Table 1: LeActiveMath Events

Event LH LM | SM | OLM
Application Events
ApplicationShutdownEvent v
ApplicationStartupEvent v
UrIRequestedEvent 4
UserCreatedEvent v v
UserLoggedInEvent 4 4
UserLoggedOutEvent v v
UserPropertyChangedEvent v
UserRemovedEvent v
Interaction Events
FocusChangedEvent v
ltemPresentedEvent 4
ltemSeenEvent v
WindowClosedEvent 4
Interaction (Dictionary) Events
DictSearchedEvent v \ \ \
Interaction (Exercise) Events
ExerciseActionEvent v
ExerciseFinishedEvent v v v
ExerciseHelpRequestEvent v
ExerciseHintProvisionEvent v
ExerciseStartedEvent v 4
ExerciseStepEvent v v
Interaction (Feedback) Events
HappinessEvent 4
SelfAssessmentEvent 4
SelfReportEvent 4 4

Interaction (Book) Events

PagePresentedEvent

v

(continued on next page)

v'Event intercepted (and processed) by the component

=¢Event fired by the component

©LEACTIVEMATHConsortium 2005

Page 7 of 24

Deliverable D31
Integration of Student Model in LEACTIVEMATH

LEACTIVEMATH(IST-507826)

Table 1: LeActiveMath Events (continued)

(continued from previous page)

Event LH | LM SM | OLM
UserBookDeletedEvent 4
UserBookPlannedEvent 4 v
UserBookRenamedEvent 4
Content Events

MBaseCollectionsChangedEvent 4

Tutorial Component Events
TutoriallnteractionEvent v | |

xLM Component Events

BeliefUpdatedEvent 4 >
SituationFactorChangedEvent v v g
OLMChallengeEvent 4 4 g
OLMMetacogEvent v v g
OLMMoveEvent v v oo

v'Event intercepted (and processed) by the component

=¢Event fired by the component

O©LEACTIVEMATHConsortium 2005

Page 8 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

2 Learner Model

The Learner Model (LM) component of XLM is the one in charge of maintaining
models of learners as they evolve through their interactions with LEACTIVE-
MATH. LM takes content metadata and event information as input to produce
updated beliefs about learners as output. Consequently, the main interactions
between LM and the rest of LEACTIVEMATH occurs precisely at the gathering of
input information and delivering of beliefs as products.

2.1 Events

Learner models are maintained by LM on the basis of information concerning
learner behaviour that comes into xXLM as event messages—see section 1 and de-
liverable D8 (Libbrecht et al., 2005). As all xLM components, LM subscribes to
the xLM manager for its provision of events, which currently consist of events of
types UserCreated, UserLoggedIn, ExerciseFinished, SelfReport, SituationFac-
torChanged and XImMOLMMove. Events of the first four types are produced by
LEACTIVEMATH components outside xLM, while events of the last two types
are produced inside xXLM.

* UserCreated and UserLoggedin events are interpreted by LM as request
for creating a learner model for the learner just registered or logged into
the system.

* ExerciseFinished events are used by LM for updating beliefs on learners’
mathematical competencies.

» SelfReport events are used by LM for updating beliefs on learner’s affec-
tive dispositions towards subject domain topics and mathematical compe-
tencies.

* SituationFactorChanged events are source of information for LM to update
beliefs on learner’s motivational dispositions towards subject domain top-
ics and mathematical competencies.

* XImOLMMove events are notifications of the status of beliefs in the discus-
sion between learners and the Open Learner Model.

2.2 Metadata

Events of types ExerciseFinished, SelfReport and SituationFactorChanged are
produced as a result of learners interacting with LEACTIVEMATH content items,
and they all include an item identifier, which is used by LM to query LEACTIVE-
MATH Content Manager for the item’s metadata. The metadata currently in use
by LM includes

OLEACTIVEMATHConsortium 2005 Page 9 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

associations between the item and other content items,

mathematical competencies trained or tested by the item,

competency level the item was designed for, and

estimated difficulty of the item.

2.3 Beliefs

Beliefs are made available to the rest of xLM through a simple application pro-
gramming interface (API) which the xLM Manager makes available to the rest of
LEACTIVEMATH (section 1).

LM provides basic facilities for managing learner models, as instances of the class
LearnerModel.

public void createLearnerModel(String learnerld);
public boolean existLearnerModel(String learnerld);
public void destroyLearnerModel(String learnerld);

public LearnerModel getLearnerModel(String learnerld);

In addition, LM provides facilities for accessing individual elements in the mod-
els, or beliefs, which are implemented as instances of the class Belief. To request
a belief, a LEACTIVEMATH component needs to provide a learner identifier and
a belief descriptor. The latter specifies the belief “coordinates” in the learner mod-
elling space. The entries in the belief descriptor should be selected from the
maps specifying the learner modelling dimensions, as specified in deliverable
D30 (Andres et al., 2005b), otherwise LM responds with a belief standing for
complete ignorance.

public Belief getBelief(String learnerld, BeliefDescriptor descriptor);

Due to the fact that LEACTIVEMATH components are most frequently interested
in “summaries” of beliefs, which are in essence decisions on what is most likely
the learner case, and LM provides them as summary beliefs, which still include
some measure of uncertainty, or learner levels, which are hard bets with no trace
of uncertainty.

public double getSummaryBelief(String learnerld,
BeliefDescriptor descriptor);

public int getSummaryLevel(String learnerld,
BeliefDescriptor descriptor);

O©LEACTIVEMATHConsortium 2005 Page 10 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

Beliefs in XLM learner models include the evidence supporting them. Although
it can be requested directly from a belief which has been recovered via getBelief,
LM supplies it on request via the following method.

public EvidenceSet getEvidence(String learnerld,
BeliefDescriptor descriptor);

Some LEACTIVEMATH components need to know of learners qualifications and
dispositions in relation to content items—e.g. the motivation a learner may have
towards doing exercise X. This service is provided also by LM, which produces a
belief (or summary of it) by taking into account the characteristics of the content
item as described in its metadata.

public Belief getBelief(String learnerld, String itemid);
public Belief getSummaryBelief(String learnerld, String itemid);
public Belief getSummaryLevel(String learnerld, String itemid);

public Belief getBelief(String learnerld,
String dimensionld, String itemld);

public Belief getSummaryBelief(String learnerld,
String dimensionld, String itemld);

public Belief getSummaryLevel(String learnerld,
String dimensionld, String itemlid);

The first three methods above cover the most common case of a LEACTIVEMATH
component requesting a belief, summary or decision on mathematical compe-
tency with respect to a piece of content—these methods deliver the closest to the
mastery value produced by the earlier ACTIVEMATH Student Model component
(see section 6.1. The last three methods generalise the previous case to recovering
beliefs, summaries or decisions on any single dimension of the learner model (i.e.

specific competencies, motivational and affective dispositions and metacognitive
skills).

In addition to the core diagnostic functionality described above, LM includes
facilities for recovering the individual maps that define the internal structure of
its learner models. The LM API includes methods of the form

public DimensionMap getMapDimension ();

where Dimension is a shorthand for any of the learner modelling dimensions (sec-
tion 2): Metacog, Affect, Motivation, Competency, CAPEs and Domain.

O©LEACTIVEMATHConsortium 2005 Page 11 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

3 Open Learner Model

As described in Deliverable D29, the Open Learner Model is composed of three
distinct parts:

¢ the OLM-GUI, located on the client-side of LEACTIVEMATH and responsi-
ble for presenting the collected information to learners and managing their
exploration of their model. It is basically an applet, embedded in a browser
window and deployed when requested by the appropriate URL.

¢ the OLM-Core, located on the server-side of LEACTIVEMATH and responsi-
ble for collecting information from the Learner Model and communicating
with LEACTIVEMATH. It basically acts as an XML-RPC server with which
the OLM-GUI communicates as a client. This communication is channelled
through a couple of “handlers” implementing the various tasks the OLM-
Core provides the OLM-GUI with.

e the OLM-Controller, also located on the server-side of LEACTIVEMATH
and responsible for coordinating the actions of the learner in the OLM-GUI
with responses in the OLM-Core. It is a MAVERICK ! object whose task is
to interpret and handle the relevant HTTP requests, build the appropriate
model and pass on the URL parameters—if any.

3.1 Communications with LEACTIVEMATH

The communication inside the OLM (i.e. between the OLM-Core and the OLM-
GUI) is ensured by the XML-RPC protocol. Communication between the OLM
and LEACTIVEMATH is ensured by the event framework supplied by LEAC-
TIVEMATH (see Deliverable D8, Libbrecht et al., 2005) and remains mostly lo-
cated within the xLM.

The front-end of the xLM is the XLMEventManager, whose job is to receive the
event published by LEACTIVEMATH and to dispatch them into the various sub-
components of the xLM. It also act, in a similar way, for the events generated by
the sub-components. This is the mechanism used for the OLM to communicate
with the xLM.

Three different events are generated by the OLM, to be intercepted and inter-
preted by the Learner Model:

e OLMMetacog events are published when evidence of the metacognitive
abilities of the learner are detected through their interaction with the OLM.
This diagnosis is made on the basis of the dialogue moves performed by
the learner, taking into account their nature (e.g. for exploration purpose
like SHOWME or for challenge purpose like DISAGREE), repetition and
context to refine the evidence.

IMAVERICK, see http://mav.sourceforge.net/

O©LEACTIVEMATHConsortium 2005 Page 12 of 24

http://mav.sourceforge.net/

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

* OLMChallenge events are published by the OLM every time a “challenge”
on its judgement is made by the learner. Here, “challenge” has to be taken
in a broad sense, including all situations where the learner agrees with
the judgement, where the learner disagrees with it and where the learner
decides to “move on” and refuses to commit himself. An OLMChallenge
event provides the Learner Model with a new piece of evidence about the
learner’s ability on the challenged topic. The nature of the evidence—and
how it will be taken into account for updating the belief—depends on how
(agreement, disagreement, avoidance) and where (on the claim or on one
of the warrant/backing justifying it) the challenge was performed by the
learner.

* OLMMove events are published by the OLM every time a dialogue move is
made, either by the learner or by the OLM.

Tables 2, 3 and 4 describe the attributes defining both events.

Table 2: Attributes of OLMMetacog events

String movelD The identifier of the dialogue move

Vector descriptor The belief descriptor, target for the inference of the
learner’s metacognition

double depth An estimation of the depth of the monitoring/control

on this belief (should be normalised, so with a value
between 0 and 1)

int initiative Indicates if the move has been made on the learner’s
own initiative (1) or on the OLM’s suggestion (0)

3.2 Integration with LEACTIVEMATH Front-end

As mentioned above, the bulk of the communication with LEACTIVEMATH will
take place within the boundaries of the xLM—essentially, it is communication
with the Learner Model—using the event framework. Nevertheless, there are
two situations where the OLM and LEACTIVEMATH are cooperating directly:
the deployment of the OLM from the front-end and the suggestion made by the
OLM to the Tutorial Component for proposing further content to present to the
learner.

3.2.1 Deployment of the OLM

The MAVERICK-VELOCITY approach used for structuring and implementing the
Open Learner Model makes it very easy to implement its deployment at the
front-end level, even ensuring a mixed-initiative strategy, where both the learn-
ers and LEACTIVEMATH can request this deployment.

OLEACTIVEMATHConsortium 2005 Page 13 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

Table 3: Attributes of OLMChallenge events

String movelD The identifier of the dialogue move
Vector descriptor The belief descriptor, target of the learner’s challenge
String target The target of the challenge, i.e. one of the Toulmin’s

element (claim, backing, etc.)

double confidence Contains the confidence of the learner’s challenge
(between 0.1 and 0.9, since we assume the learner to
be neither totally confident nor totally uncertain)
double intransigence | Contains the degree of intransigence of the learner, ie
how much he/she is prepared to compromise with

the OLM

double level If the target is CLAIM, contains the level that the
learner thinks represents his/her true abilities

int evidence If the target is WARRANT or BACKING, it contains

the index of the evidence (in the belief) that has been
challenged. Otherwise, it contains -1

String attribute If the target is BACKING, it contains the attribute of
the event that has been challenged (eg “difficulty” of
an exercise, “pride” from the SRT, etc)

String value If the target is BACKING, it contains the value of the
attribute that the learner thinks should be taken into
account by the LM (eg “very_easy” for “difficulty”).

Table 4: Attributes of the OLMMove events

String movelD The identifier of the dialogue move

boolean isOLM Indicates if the move has been played by the OLM
(true) or by the learner (false).

Vector descriptor The belief descriptor, target of the dialogue move.

String target The target of the move, i.e. one of the Toulmin’s ele-
ment (claim, backing, etc.) or null if not applicable.

The Open Learner Model is uniformly accessed by its URL, as specified above.
It is only on activation that instances of the OLM-GUI and OLM-Core will be
created for each learner individually (and in a transparent way). This means that
the OLM can be deployed both manually by the learner (see for example figure 2
showing the main menu of LEACTIVEMATH with a direct shortcut for the OLM)
and programmatically by the system, using a single explicit URL.

The Tutorial Component for example is already using such possibility when im-
plementing the tutorial strategies (see Deliverable D20, Reiss et al., 2005). One
of the tasks of the strategies can be introduced to explicitly request learners to

O©LEACTIVEMATHConsortium 2005 Page 14 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

Main Page | Search | Notes | My Profile | Tools | Print |

ath

Main Page

Hello toto.
This is the main page of ActiveMath. Please choose one of the books,

Figure 2: Snapshot of LEACTIVEMATH main menu, containing a shortcut to the
OLM

access their model (for example at the end of the sequence). This task, besides
introductory texts and prompts, contains a shortcut to the OLM. Depending on
the circumstance, parameters can be added to the plain URL to specify the topic
with which the OLM should be first deployed (see figure 3).

Main Page | Search | Notes | My Profile | Tools | Print | Logout | Help

[Looking Back

e
My Book My Book > Looking Back
- 1 Section: Definition of a lower bound
L]

What do you learn in this book?Click here to open the

® Definition of a lower bound
! g learner model and to inspect your competencies

+ 2 Section: Definition of an upper bound

¥ Definition of an upper bound

+ 3 Section: The binomial coefficients

W The binomial coefficients

Figure 3: Snapshot of a learning object containing a reflection task, used to deploy
the OLM

3.2.2 Suggestions to the Tutorial Component

When the negotiation between the OLM and the learner on a topic reaches a
point where no agreements could be made, the OLM has the possibility to sug-
gest to the learner to perform more exercises before resuming the discussion (the
assumption being that more evidence gathered by the Learner Model may lead
either the OLM or the learner to change their position on the disagreement).

Such a possibility is offered by the Tutorial Component—with its mechanism
for selecting pieces of content (see Deliverable D20, Reiss et al., 2005))—and is
providing us with an interesting bridge between the tutorial and self-reflective
aspect of LEACTIVEMATH.

This functionality has been formally agreed between WP4 (OLM) and WP3 (Tu-
torial Component) and is in its early stage of implementation (most of the re-

O©LEACTIVEMATHConsortium 2005 Page 15 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

maining investigations are focusing on which criteria are using to select the extra
exercises, how they are presented to the learner and how they are referred to by
the Learner Model).

O©LEACTIVEMATHConsortium 2005 Page 16 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

4 Situational Model

As it is described in D30 (Andres et al., 2005b), the Situational Model consists of
three components:

¢ the Situational Diagnosis Agent (SDA),
¢ the Situational Modeller (SM-ler), and
¢ the Situational Model Proxy (SM-proxy).

The SDA is responsible for diagnosing the values of the situational variables such
as learner confidence, interest, effort, and aptitude based on the information re-
ceived as part of LEACTIVEMATH events. The SM-ler is responsible for conduct-
ing the diagnisis of the autonomy and approval values based in the situational
diagnosis performed by the SDA. Finally, the SM-proxy is in charge of connect-
ing the remote components of the Situational Model (SDA and SM-ler) with the
rest of xLM.

As is the case with all sub-components of the xLM, the communication between
the Situational Model and LEACTIVEMATH is facilitated by the event framework
supported by LEACTIVEMATH (see Deliverable D8 Libbrecht et al., 2005). All
three components of SM are in their own way involved in communication with
LEACTIVEMATH.

The XImEventManager—the front-end of xXLM—receives LEACTIVEMATH pub-
lished events and dispatches them to the Situational Model amongst other sub-
components of the xXLM. The XImEventManager also provides a gateway for the
events generated by the xXLM subcomponents.

The mechanism for communicating with the xXLM and the rest of LEACTIVE-
MATH is supported by the Situational Model by means of event handlers. There
are five LEACTIVEMATH types of events that the situational model handles:

» ExerciseStarted events inform the SM that a new exercise was started.
They are used to provide information about the difficulty of the materials.
SM also creates a copy of a Bayesian network for every learner for which
such a copy does not already exist.

* ExerciseFinished events, which are used to infer the composites of the val-
ues of learner achievement, learner aptitude, interest and effort. They are
some of the events that trigger the diagnosis of the situational variables to
be sent to the xXLM. They carry the information about the success rate of the
solutions provided by the learners.

» ExerciseStep events, which provide information as to the difficulty of exer-
cises and the learners’ success rates. Just like ExerciseFinished events, they
are events that trigger the diagnosed values of the situational variables to
be sent to the xXLM.

OLEACTIVEMATHConsortium 2005 Page 17 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

* UserBookPlanned events, which provide information as to the importance
of materials. They are used only by the Importance object which sets the
importance value to high if the Scenario type input value from the events
is ExamSimulation.

e UserLoggedOut events, which are used to inform the Situational Model
about the fact that the system is no longer in use by a specific user. These
events are used to ensure that system maintenance is carried out and that
copies of message buffers and copies of networks created for individual
users at run-time are deleted once the users log out.

The event handling classes all implement XmIRpcServerMethod which allows
their instances to be registered with the SM XmIRpcServer object created at the
start of SM execution. This server object binds itself to a port (currently 27777)
and listens for incoming traffic from the SM-proxy. In turn, the SM-proxy sub-
scribes to the xXLM Event Manager for event publication and re-sends the events
it receives to the XmIRpcServer singleton in SM. When an event is in the end
received by SM, its server object works out which of the XmIRpcServerMethod
objects it contains should be invoked. The chosen event handler translates the in-
coming messages from XmlIRpcValues to AMEvents, which then get passed into
SDA for processing. The Situational Model internal processing involves calling
DiagnoseFactorValues and GetSituationalDiagnosis methods on SDA.

The factor values calculated by the SDA are passed back to LEACTIVEMATH by
instantiating an XmIRpcClient object, wrapping the factor values in an XmIRpc-
Value structure and passing this structure to the execute method on the XmIR-
pcClient. When LEACTIVEMATH Event Manager receives the XML-RPC call, it
takes the information delivered by SM, fills a SituationFactorChanged event ob-
ject with it and publish the event to its subscribers.

The situational diagnosis produced by SDA is also passed on to the Network-
Manager which is responsible for running the SM-ler Bayesian network in order
to calculate recommended values for autonomy and approval. A special type of
events, GetFace, is used by the SM proxy to recover information from the SM-
ler. Events of this type are empty, faked events send to the SM XmIRpcServer
object every time there is request for the current recommendations for autonomy
and approval. The results of running the Bayesian network are passed back to
SM-proxy via the return parameter of the event handler for GetFace events.

O©LEACTIVEMATHConsortium 2005 Page 18 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

5 Learner History

The Learner History needs to store all events received by xLM that are of rel-
evance for learner modelling. However, the current implementation has gone
beyond that, and currently stores all events produced inside LEACTIVEMATH,
internal and external to xLM.

The learner history implementation is based on HIBERNATE, a framework for ob-
ject/relational persistence with a query language (HQL) that is independent of
the database in use. Furthermore, an important feature of HIBERNATE is the re-
trieval of stored objects by using a criteria-based approach, by setting constraints
on attribute values that the objects retrieved must match.

To map objects to a database schema, an XML-based configuration is required that
specifies which object to map to which table, and which field has to be mapped
to which column. HIBERNATE will then take care of creating the schema if it does
not yet exist in the database—more details of this can be found in deliverables
D10 (Andres et al., 2005a) and D30 (Andres et al., 2005b).

Information can be recovered from LH either by specifying an identifier for an
event or by constructing a query—a HistoryQuery. In the latter case, filters must
be specified for the properties that events must have (including filters) and prop-
erties they must not have (excluding filters). Limits on event indexes in the list
of events—ordered chronologically—and maximum number of events to be re-
trieved can be specified, as well as requesting only the number of events that
match the query.

public ActivemathEvent fetchEvent(long id);
public List getHistoryEntries(HistoryQuery query);

public List getHistoryEntries(HistoryQuery query,
int firstResult , int maxResults);

public int getNumResults(HistoryQuery query);

LH provides an additional method as a shorthand for the common query on
whether a learner has already seen or not a content item.

boolean alreadySeen(String learnerld, String itemid);

OLEACTIVEMATHConsortium 2005 Page 19 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

6 The view from LEACTIVEMATH

This section summarises the integration of the Extended Learner Model (xXLM)
from the perspective of the rest of LEACTIVEMATH. While most of the integra-
tion work involves embedding the learner model into the existing LEACTIVE-
MATH application seamlessly, there are two notable places where the rest of the
LEACTIVEMATH needs to be explicitly aware of the xLM: the knowledge indicators
of the GUI, and the Tutorial Component, which uses the learner model for course
planning.

6.1 Integration with the LEACTIVEMATH front-end and GUI

Since the XLM uses the OLM as its primary GUI, the rest of LEACTIVEMATH's
user interface is mostly unaffected by the integration. The important exception
here are the colored little boxes that LEACTIVEMATH uses to indicate the per-
sonal “knowledge” to its users (the term knowledge is used in a broad and gen-
eral sense here).

The knowledge indicators are attached to each content item, book page, chapter
and entire books. Depending on the knowledge level, they vary from grey (un-
known) to red (low), yellow and green (high). Calculation of the knowledge level
is based on single numerical value that the learner model provides for each user
for a specific content item. Prior to xLM, the knowledge level was based on a
“mastery value” computed by the existing learner model of ACTIVEMATH. With
the integration of xLM, these values come from the LM and represent compe-
tency levels.

The basic function for integration is

double getSummaryBelief(String learnerld, String itemlId)

which returns the desired single numerical value at the item level.

To fetch a learner’s knowledge level for a content item, all LEACTIVEMATH com-
ponents by design use a single method of the central User object representing
the learner. It is only within this central method that the rest of LEACTIVEMATH
front-end accesses the xXLM to retrieve the knowledge level. By changing this
method to access XLM instead of the old learner model, integration into the front-
end was easy to achieve.

6.2 Integration by the Tutorial Component

The Tutorial Component, especially its central sub-component, the course gen-
erator, uses the information provided by the xXLM extensively. Deliverable D20,
Formalized Pedagogical Strategies (Reiss et al., 2005), specified the pedagogical
knowledge underlying the course generation process, and in particular the rela-
tionship between the current state of the learner as represented in the XLM and
the selection of the content items to be presented in a course.

O©LEACTIVEMATHConsortium 2005 Page 20 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

The pedagogical strategies are implemented using JSHOP2, a hierarchical task
network planner. The following lines of code provide an example of the imple-
mentation:

(:method (illustrateWithSingleExample! ?c)
(’. ; /F
(learnerProperty hasField ?field)
learnerProperty hasEducationalLevel ?el)
learnerProperty hasMotivation ?¢c ?m)
call <?m2)
learnerProperty hasCompetencyLevel ?c ?cl)
equivalent ?cl ?ex_cl)
assignlterator ?example
(call
GetElements
((class Example)
(relation isFor ?c)
(property hasLearningContext ?el)
(property hasCompetencylLevel ?ex_cl)
(
)

P e e e e

property hasField ?field)

)
)
;; THEN
((insertElementOnce! ?example))

)

This method is one of several methods that try to fulfill the pedagogical tasks of
illustrating a concept using a single example. The upper part of the method spec-
ifies the methods preconditions that have to be fulfilled in order for the method
to be applicable. It basically states that if the learner’s motivation is low (< 2) and
there is a content element available that is an example of the field of the learner
and its learning context corresponds to the educational level of the learner, and
its competency level corresponds to the current competency level of the learner,
then this example will be added in the course (the actions in the bottom part of
the method). A similar method encodes that in case the learner is highly moti-
vated, then one can insert an example requiring a higher competency level. The
course generator accesses the information represented in the xLM via a bridge
that hides the concrete xLM implementation from the planner. This bridge takes
the queries from the course generator and builds the corresponding believe de-
scriptors (see below for a code snippet that generates a belief descriptor accessing
metacognitive information).

public double getMetacognition(String userld, String itemld,
Metacognition meta)
{

try {

O©LEACTIVEMATHConsortium 2005 Page 21 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

double result = doGetSummaryBelief(userld,
meta.toString (), itemld);
}
catch (\xLMException e) {
log. error("Couldn’t_retrieve _belief _for_ "
+ "metacognition_dimension_" + meta + "'_on_,
+ itemld);
return —1;

}

return result;

O©LEACTIVEMATHConsortium 2005 Page 22 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

7 Outstanding issues

From the beginning, the Extended Learner Model (xXLM) has been developed as
an integral part of LEACTIVEMATH. However, some care has been taken to make
XxLM easily detachable from LEACTIVEMATH in the future. Accordingly, some
issues regarding the integration of XLM into LEACTIVEMATH have already been
discussed in deliverable D30 (Andrés et al., 2005b), so only a summary is given
below.

Limited coverage of content Due to restrictions on the use and adjustment
of OMDoc, the language used in LEACTIVEMATH for representing mathematical
content, a separate concept map for the subject domain has been the implemen-
tation of choice for xXLM. It provides a solid ground for learner modelling which
is less sensitive to repetitions, inconsistencies, errors and changes in content. De-
spite the WP4 team’s attempts to make the relevance of this map clear to the
project, and the value of this more ontologically oriented approach to the subject
domain, any efforts in this direction have been exerted with minimal coordina-
tion between work packages. The map of the subject domain has been seen as
exclusive to the interests of XLM, and as a consequence has had almost no sup-
port elsewhere in the project. The subject domain map of Differential Calculus,
as currently implemented as part of xLM, is certainly adequate for LEACTIVE-
MATH evaluation but some further work is needed by the project.

Lack of support for misconceptions Misconceptions identified and anno-
tated by authors have been formally introduced in content and content metadata
only very recently, but their representation is still very primitive — a list of OMDoc
symbols with no references to other content items. This condition has severely
affected XLM processing of misconceptions. The framework is set for it, yet no
turther details of their processing could be implemented.

Competency and mastery Both content and xLM has been developed on the
basis of a new view for mathematical teaching and assessment grounded on
the notions of mathematical competencies and competency levels (OECD, 2003;
BMBEF, 2004). However, changes to LEACTIVEMATH front-end to upgrade it to
the new language is still limited to replacing the earlier notion of mastery by the
new notion of overall mathematical competency. Although access to the full new
scheme is available to users through the OLM GUI, the production of explana-
tions that are readily accessible to learners is still ongoing work.

OLEACTIVEMATHConsortium 2005 Page 23 of 24

Deliverable D31 LEACTIVEMATH(IST-507826)
Integration of Student Model in LEACTIVEMATH

References

Andres, E., P. Brna, N. van Labeke, M. Mavrikis, R. Morales, H. Pain and
K. Porayska-Pomsta (2005a). Student model specification. Deliverable D10,
LeActiveMath Consortium.

Andres, E., P. Brna, N. van Labeke, R. Morales, H. Pain and K. Porayska-Pomsta
(2005b). Diagnostic functionalities. Deliverable D30, LeActiveMath Consor-
tium.

BMBF (2004). The development of national educational standards: An expertise.
Tech. Rep. 1, Federal Ministry of Education and Research, Berlin, Germany:.

Brna, P, N. van Labeke and R. Morales (2005). Open student model. Deliverable
D29, LeActiveMath Consortium.

Libbrecht, P, E. Andres, O. Lemon, R. Morales, K. Porayska-Pomsta, S. Win-
terstein, C. Ullrich and C. Zinn (2005). Open architecture. Deliverable D8,
LeActiveMath Consortium.

OECD (2003). The PISA 2003 Assessment Framework. Organisation for Economic
Co-Operation and Development.

Reiss, K., M. Moormann and C. Grofs (2005). Formalized pedagogical strategies.
Deliverable D20, LeActiveMath Consortium.

O©LEACTIVEMATHConsortium 2005 Page 24 of 24

	Executive summary
	xLM architecture and information exchange
	Learner Model
	Events
	Metadata
	Beliefs

	Open Learner Model
	Communications with LeActiveMath
	Integration with LeActiveMath Front-end
	Deployment of the OLM
	Suggestions to the Tutorial Component

	Situational Model
	Learner History
	The view from LeActiveMath
	Integration with the LeActiveMath front-end and GUI
	Integration by the Tutorial Component

	Outstanding issues
	Bibliography

