
Deliverable N°: D30

Diagnostic Functionalities

The LEACTIVEMATH Consortium
December2005

Version 1

Main Authors:
Eric Andrès, Paul Brna, Nicolas Van Labeke,
Rafael Morales, Helen Pain,
Kaśka Porayska-Pomsta

Project funded by the European Community under the
Sixth Framework Programme for
Research and Technological Development

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Project ref. no. IST-507826

Project title LEACTIVEMATH- Language-Enhanced, User
Adaptive, Interactive eLearning for Mathemat-
ics

Deliverable status Restricted

Contractual date of deliv-
ery

December 31st 2005 (Month 24)

Actual date of delivery January 31th 2006

Deliverable title Diagnostic Functionality

Type Prototype

Status & version 1

Number of pages 66

WP contributing to the
deliverable

WP4

WP/Task responsible WP4 / 4.4

Author(s) Eric Andrès, Paul Brna, Nicolas Van
Labeke,Rafael Morales, Helen Pain, Kaśka
Porayska-Pomsta

EC Project Officer Colin Stewart

Keywords Learner modelling, situational modelling, be-
liefs, belief function, Dempster-Shafer Theory.

©LEACTIVEMATH Consortium 2005 Page 2 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Contents

Executive summary 5

1 Introduction 6

2 Principles 9
2.1 Introduction . 9
2.2 The Situational Model . 9

2.2.1 Data analysis methodology 10
2.2.2 Results of the analysis . 11

2.3 Learner Model . 16
2.4 Learner History . 18

3 Functionality 19
3.1 Diagnosis . 19
3.2 Information interchange . 20
3.3 Application program interface . 22

3.3.1 Situation Model . 22
3.3.2 Learner Model . 22
3.3.3 Learner History . 24

4 Implementation 26
4.1 Introduction . 26
4.2 Situational Model . 26

4.2.1 Design decisions . 27
4.2.2 Implementation . 33
4.2.3 The flow of information within the Situational Model 41

4.3 Learner Model . 43
4.3.1 Levels and beliefs . 44
4.3.2 Evidence . 46
4.3.3 Propagation of evidence . 53
4.3.4 Belief updating . 54

4.4 Learner History . 55

©LEACTIVEMATH Consortium 2005 Page 3 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

5 Outstanding issues 58

Bibliography 61

A Learner Model Maps 65

©LEACTIVEMATH Consortium 2005 Page 4 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Executive summary

This report is part of deliverable D30 Report and Prototype of Diagnostic Functionali-
ties and provides a description of the implementation of the diagnostic function-
alities of the Extended Learner Model (xLM), the prototype learner modelling
subsystem of LEACTIVEMATH that replaces the earlier ACTIVEMATH learner
model. It includes also an explanation of the rationale behind the design and
implementation of xLM, and a discussion of outstanding issues.
The diagnostic functionalities of xLM are built on top of a concept map that ex-
plicitly tries to represent the semantic structure of the subject domain and LE-
ACTIVEMATH content. The formal description of the underlying structure of
a mathematical domain is complemented with the operationalisation of a new
standard for supporting and evaluating mathematical learning, based on the no-
tions of mathematical competency and competency level. In addition, xLM is
able to diagnose and model a variety of emotional, attitudinal, motivational and
situational aspects of learning. Furthermore, by integrating the Open Learner
Model delivered in D29 Report and Prototype of Open Student Model, xLM is able
also to diagnose some aspects of the meta-cognitive skills of learners.
The inferencing capabilities of xLM are developed on top of Bayesian inference
and a variation of Dempster-Shafer Theory known as the Transferable Belief
Model. The former has a short but solid tradition in learner modelling, and the
latter offers the opportunity to model a broader sense of uncertainty about the
learner and deal better with conflicting evidence.
xLM simple interface allows other LEACTIVEMATH components to request infor-
mation about beliefs held in learner models, including the evidence supporting
them. They can also request decisions on what is the more likely status of learner
states or dispositions, suggestions on how much autonomy and approval to give
to learners and details of the learner history. For more content-oriented compo-
nents, xLM is able to provide beliefs and decisions about learner capabilities and
dispositions in relation to individual content items, such as an explanation or an
exercise.

©LEACTIVEMATH Consortium 2005 Page 5 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Chapter 1

Introduction

LEACTIVEMATH fits the description given by the Advanced Distributed Learn-
ing Initiative for a second-generation e-learning system that combines a modern
content-based approach from Computer Based Instruction (CBT)—in its book
metaphor, developed on top of web technology and learning objects—with adap-
tive educational strategies from Intelligent Tutoring Systems (ITS) (Polson and
Richardson, 1988; ADL, 2004).
This mixture of approaches have produced tensions in the design of LEACTIVE-
MATH in general, but particularly in the design of the Extended Learner Model
(xLM), LEACTIVEMATH learner modelling subsystem. xLM is aimed at support-
ing a wide range of adaptive educational strategies, from coarse-grain book con-
struction to tailored natural language dialogue, without the support of painfully
designed and dynamically constructed learning activities capable of providing
large amounts of specific and detailed information about learner behaviour—
something traditionally afforded by ITS systems. LEACTIVEMATH makes heavy
use of pre-authored educational content to support learning, hoping to capitalise
in this way on the expertise of a variety of authors at producing educational
materials. However, educational content is for the most part opaque to learner
modelling, in the absence of domain expert subsystems to query about what is
inside it. The information available for learner modelling is hence reduced to
what has been explicitly provided by authors in the form of metadata.
Metadata is a heavy burden on authors since it amounts to work be done twice:
to say something and to say what it was said. The more detailed and accurate
the metadata, the more extra work to do. Consequently, metadata tends to be
subjective and shallow, with a well-intentioned drive towards standardisation
thwarted (from a modelling point of view) by the shallowness of current meta-
data standards such as LOM (IEEE, 2002).
Guidance to learners through educational content in many e-learning systems,
as in LEACTIVEMATH, jumps in between two extremes: predefined paths and
content browsing. From a learner modelling perspective, both situations are
for the most part equivalent, since neither of them accommodates the presen-
tation of new content materials to the modelling needs. Whereas in some ITS
systems learner modelling can lead the learner’s progress through the subject
domain (e.g. Corbett and Anderson, 1995), in our case it has to be opportunistic,
taking advantage of whatever information is available. To round the picture,

©LEACTIVEMATH Consortium 2005 Page 6 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

the learner modelling component of LEACTIVEMATH was required to model the
learner meta-cognitive state, as well as their motivational and affective states and
dispositions (LeActiveMath, 2004).
A learner modelling subsystem in this conditions has to do “more with less,”
answering questions about learners on the basis of scarce information, hopefully
without pursuing blind over-generalisation. Nonetheless, this is not an uncom-
mon situation at the onset of adaptive content-based e-learning systems. The
consequences of the requirements and working conditions described above on
the design and implementation of xLM are described in this report. They can be
summarised in six aspects: a modular design for the learner modelling subsys-
tem, a generic multi-dimensional modelling framework, tolerance to vague and
inconsistent information, capability for representing both conflict and ignorance
about learners, squeezing of sparse information and open learner modelling.
The modular design of xLM attempts to draw in its implementation the map
of the distinct tasks that are involved in learner modelling: keeping a record of
learner history, the raw data for learner modelling; building a model that ex-
plains this history and attempts to elucidate the present and the near future;
modelling ongoing states as well as trends and dispositions, and making all
this available for learner inspection and negotiation. xLM design prepares it
to meet the requirement of a range of e-learning systems similar to LEACTIVE-
MATH. New needs can be meet by localised changes in individual components
that become mostly transparent to the rest of the xLM subsystem.
The current diagnostic functionalities of xLM are built in accordance with a mod-
ern approach to supporting and evaluating mathematical learning that is based
on mathematical competencies (OECD, 2003). Mathematical competencies in
xLM aggregate into an orthogonal dimension that applies to the subject domain,
the collection of topics of discourse of LEACTIVEMATH content. A similar ap-
proach for a collection of meta-cognitive, motivational, affective and situational
aspects of learning, as orthogonal dimensions that apply to each other in a pre-
defined way, gives xLM flexibility and power to diagnose and model a wide
range of learner states and dispositions. Propagation of evidence according to
the structure of each individual dimension is an additional feature of xLM that
takes it further away from ACTIVEMATH old learner model. Propagation of evi-
dence allows xLM to profit more from explicit knowledge on the semantic struc-
ture of the subject domain and other learner modelling dimensions, and from the
information provided by other LEACTIVEMATH components.
Tolerance of vague and inconsistent information has been built into xLM by em-
ploying techniques of approximate reasoning. These are Bayesian inference, a
technique of growing popularity for user and learner modelling (Conati et al.,
2002; Jameson, 1996; Zapata-Rivera and Greer, 2000), and the Transferable Belief
Model (TBM, Smets and Kennes, 1994), a variation of Dempster-Shafer Theory
(DST, Shafer, 1976). TBM-like techniques have not been used for learner mod-
elling so far, and have been scarcely used for user modelling (Jameson, 1996).

©LEACTIVEMATH Consortium 2005 Page 7 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

However, they seem more suitable to face the problem of learner modelling for
the broad and varied community of web users because of its capability to for-
mally model a broad sense of uncertainty about learners and to deal with con-
flicting evidence.
xLM makes its diagnostic functionality available to the rest of LEACTIVEMATH
through a single entity, the xLM Manager, and a well defined application pro-
gram interface (API). xLM receives requests from other LEACTIVEMATH com-
ponents regarding beliefs held in learner models, which are delivered packaged
with the evidence supporting them. LEACTIVEMATH components that do not
need such a level of detail, or are still unable cope with it, can request summa-
tive versions of beliefs as numerical values that imply decisions on what is the
more likely status of learner states or dispositions. Suggestions on how much
autonomy and approval would benefit learners more, and details of the learner
history are also available under request. Even for content-oriented components,
which prefer to talk about learners in relation to specific content items, xLM is
able to provide summative beliefs and decisions about learner capabilities and
dispositions given a content item. This variety of generic mechanisms for access-
ing xLM information and inferences aims to makes it easily accessible to the rest
of LEACTIVEMATH.

©LEACTIVEMATH Consortium 2005 Page 8 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Chapter 2

Principles

2.1 Introduction

The design and implementation of the diagnostic functionality of the Extended
Learner Model (xLM) are based on a number of principles. Overall, xLM archi-
tecture was designed and implemented following a principle of modularity. This
means that the diagnostic functionality of xLM has been distributed among three
of its core components: Situational Model (SM), Learner Model (LM) and Learner
History (LH). The Situational Model diagnoses the learner’s motivational state
in the ongoing situation. The Learner Model collects SM diagnoses—as well as
diagnoses provided by other components of LEACTIVEMATH—and reports of
learner behaviour in order to diagnose the learner’s long term qualifications and
dispositions towards the subject domain. Finally, the Learner History keeps a
record of all evidence supporting the other components’ diagnoses.
The principle of modularity has been applied also to how xLM integrates with
the rest of LEACTIVEMATH: there is a single main interchange point, the xLM
Manager, that provides access to all xLM functionality. Within the limits of prac-
ticality, effort has been put into making of xLM a generic learner modelling sub-
system and reducing its dependencies on LEACTIVEMATH, so that it should be
relatively easier to decouple them in the future for xLM to serve other systems.
The following sections explain the principles behind the design and implemen-
tation of the Situational Model (section 2.2), the Learner Model (section 2.3) and
the Learner History (section 2.4). The other core component of xLM, the Open
Learner Model (OLM) is described in deliverable D29 (Brna et al., 2005).

2.2 The Situational Model

The design and implementation of the Situational Model relies largely on the
results of the analysis of the empirical data gathered in the context of LEACTIVE-
MATH by means of three studies that were described in detail in the deliverable
D10 (Andrès et al., 2005). The methodology on which the analysis of the studies
was based was determined by the nature of the early design specification of the
situational model given also in the deliverable D10.

©LEACTIVEMATH Consortium 2005 Page 9 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

2.2.1 Data analysis methodology

The overall data analysis methodology used in determining the design and im-
plementation of the situation model was driven by the specification of the system
and it resulted in two levels at which the analysis was performed:

1. Quantitative analysis of the numerical data was used to determine the rel-
evant situational variables to be modelled in the SDA and to identify the
relationships between the situational variables in specific combinations.

2. Qualitative analysis of the verbal protocols was used to determine the prin-
ciples by which the relationships between the situational variables would
impact on the autonomy and approval values calculated by the SM-ler.

Three types of quantitative analysis were carried out:

• Descriptive analysis which was used to obtain a measure of relative impor-
tance to tutors’ feedback of each situational variable in the data set.

• Pearson’s linear correlations analysis which was used to establish the rela-
tionships between the individual factors.

• Principle Factor Analysis (PFA) was used to determine the groupings of
factors and to reduce the dimensionality of the data.

For the descriptive analysis we used frequency measure to determine the overall
relevance of every variable to tutors’ feedback decisions. This was necessary to
make the design and especially the implementation of the Situation Model both
feasible within, and relevant to LEACTIVEMATH. Specifically, as we reported
in the deliverable D10, we wanted to find out what factors the tutors consider
when deciding on their feedback and how often these factors are used across all
interactions. The purpose of this was to establish a minimum set of situational
factors that would constitute both necessary and sufficient input to the situation
model.
The need to perform the correlational analysis was motivated by the fact that the
situational model is defined in terms of high interdependence between a num-
ber of relevant situational variables and their values. For example the degree of
student’s confidence may depend on the degree of difficulty of the exercise or ex-
ercise step. Identifying the exact relationships between the situational variables
and the strength of those relationships is central to the design of the situation
model and to its ability to perform the diagnosis of autonomy and approval val-
ues.
Finally the Principle Factor Analysis was used to aid the reduction of complexity
of the emerging model. High interdependence between many variables is gen-
erally difficult to model computationally. It is typically beneficial to reduce the
dimensionality of the modelled space in order to increase the perspicuity of the

©LEACTIVEMATH Consortium 2005 Page 10 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

design and efficiency of the implemented system. The Principle Factor Analy-
sis was also used to aid decisions as to whether or not to retain the variables
between which the relationship was weaker.
With respect to the qualitative analysis, it consisted of two stages: (1) the prepa-
ration stage and (2) the actual analysis stage. In the preparation stage the data
was clustered based on the groupings of the situational variables obtained from
the PFA. The clustered data was then summarised in terms of the individual
value combinations of the situational variables in each cluster. The value combi-
nations in each cluster were identified by the interaction ID which was composed
of tutor ID, student ID, situation ID and a time stamp indicating the date and
time at which a particular situational variable value combination occurred in a
given interaction. The summaries were used to guide the preliminary analysis
of the logged dialogues along with the verbal protocols in terms of the degree
of autonomy (guidance) and approval intended by the tutor in each relevant sit-
uation. Ultimately the qualitative data analysis served as an empirical basis for
defining the rules which would enable the calculation of autonomy and approval
values by the Situation Model.

2.2.2 Results of the analysis

As was already reported in D10, in order to understand the relevance of each
factor used by the tutors in our studies to tutor feedback, we allowed the tutors
to select from a range of clues, including the value “irrelevant” whenever it was
applicable during their interactions with the students. During data analysis, we
used these values to perform frequency counts to reveal the relative importance
of each factor to tutors’ decisions across all interactions. Figure 2.1 illustrates our
findings.
We identified 5 groups of factors each with a decreasing relevance to tutors’ de-
cisions. The most important factors of which the frequency count (FC) is above
200 out of the total of 309 recorded situations include correctness of student’s
answer with FC = 259, student’s confidence (FC = 250), student’s aptitude (FC
= 222), and student’s interest (FC = 214).
The second group with the overall frequency count above 150 includes difficulty
of material (FC = 183) and importance of material (FC = 165).
The third group of factors used over a 100 times includes student effort (FC =
140) and amount of session time left (FC = 119).
Two factors were use more than 50 times: student’s knowledge (FC = 78) and
amount of material left to cover in the current session (FC = 76).
The group of the least important factors, used less than 50 times by different
tutors across interactions, includes student’s emotional state (FC = 46), relative
difficulty (FC = 41), interface (FC = 38) and goal (FC = 37).
The results of the frequency counts show that not all the factors are equally im-
portant to tutors’ decisions across the board. What these results give us is a sys-

©LEACTIVEMATH Consortium 2005 Page 11 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Figure 2.1: Relevance of individual factors to tutors’ decisions

©LEACTIVEMATH Consortium 2005 Page 12 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

tematic, empirically supported way of selecting the factors which are essential
to our model. These include most factors in the first, second, third and possi-
bly the fourth group, but probably not in the fifth group where the factors were
used between different tutors less than 50 times in total. Ultimately our deci-
sions regarding the inclusion of a factor in our system rely primarily on whether
or not further support for or against it can be found in other data sources that
we gathered such as verbal protocols, interviews and cognitive walkthroughs.
For example, the goal and interface were not only selected by the tutors very
infrequently, but they were also used by only one out of five tutors who addi-
tionally found it virtually impossible to define the meaning of the two factors in
a systematic way or to point to the sources of evidence in students’ behaviour
that could be used to infer such meaning. Without such information from the
tutor it becomes very arbitrary an affair to define the way in which the values
of the factors can be inferred, what values are relevant at all and how they may
interact with other relevant factors. This is certainly a problem which we also
encountered with student’s emotional state factor which again was used very
infrequently by the tutors.
The descriptive analysis allowed us to weed out all of the situational variables
which were identified through the analysis as being used less than 50 times
across all the interactions in our data set. This meant eliminating student’s emo-
tional state,relative difficulty, interface and goal. Furthermore, we examined
the remaining set of situational variables with respect to relevance to the LE-
ACTIVEMATH environment. This lead to the elimination of further two vari-
ables from the set, namely the amount of time left and the amount of material
left. Whilst these two factors were used relatively frequently by the tutors in
our study, they could not be used in the context of LEACTIVEMATH which nei-
ther imposes a time pressure on completion of exercises nor keeps track of the
amount of material left till the end of a session. The resulting set consisted of
eight situational variables which included:

1) student’s confidence,
2) correctness of student’s answer,
3) student’s aptitude,
4) student’s interest,
5) difficulty of an exercise,
6) importance of an exercise,
7) student’s effort, and
8) student’s knowledge

We used the data for the remaining set of situational variables to perform Pear-
son’s linear correlations analysis to identify whether or not the variables affected
each other in specific combinations and if so what was the nature of the rela-
tionship between them. We found that most situational variables were in a rela-
tionship with one another to various degrees. Only two sets of variables did not
seem to be correlated. These were student confidence and importance of mater-

©LEACTIVEMATH Consortium 2005 Page 13 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

ial, and correctness of student answer and the level of student knowledge. The
apparent lack of a relationship between the last pair is surprising as one would
expect the level of student’s knowledge to affect the correctness of their answers.
Whilst it is difficult to find a strong explanation for this, it is possible that, sim-
ply, the student’s knowledge factor was used was inconsistently by the tutors.
This factor was mostly used by only one out of the 5 tutors that took part in our
studies, and even that tutor had problems with providing a coherent definition
of its meaning. Altogether and surprisingly, the student knowledge variable was
used 78 times out of the total of 309 analysed presently.
As is shown in table 2.1, most relationships were substantial and were charac-
terised by moderate correlations. This was indicated by both the significance
levels and the values of the Pearson’s r correlation coefficient. A less strong rela-
tionships, though still indicated by moderate correlations, were found between
correctness of student answer and student effort, and between student’s effort
and student knowledge.
In order to gain a better view on the relationships between the factors, and to
obtain a grouping of factors that would aid our implementation efforts, we also
conducted a Principle Factor Analysis on the remaining data set. For this analy-
sis we used Varimax rotation with Kaiser normalisation. The results consisted
of 3 groups shown in table 2.2. Four situational variables were highly correlated
with the first and the strongest group accounting for 34.7% of the variance in
the data. In order of the strongest correlation with the group, the variables in-
cluded student effort (.829), student aptitude (.826), student interest (.798) and
student confidence (.660). Other factors clearly correlated with this group, but
to a lesser extent. The strength of the remaining variables on other groups ex-
tracted through the analysis suggest that these factors should not be considered
in group 1. These include difficulty of material and importance of material both
strongly loading on group 2 with .771 and .901 loading values respectively.The
second group accounted for 23.6% of variance. Finally, the third group (account-
ing for 17.7% of variance) had predominantly one significant factor loading – that
of correctness of student answer with the loading value of .959.
Again a problematic factor is that of student knowledge. Although it loads on
the first group with the value of .317, it is not significant enough to be included
in this group: a typical Kaiser normalised cut off value for inclusion in a group is
around .45. This means that the factor should not be included in either group 1
or group 3. On the other hand its loading on group 2 is negative (with the value
-.636) indicating that in fact it is not relevant to that group at all.
Given that in our correlations analysis student knowledge has been found to
be only weakly correlated with other factors, coupled with the lack of frequency
with which tutors selected or commented on it during interactions, plus the point
that actually none of the tutors were able to provide a clear definition of this vari-
able, led us to a decision to remove this variable from the set to be modelled in
LEACTIVEMATH. By removing this factor from the set analysed we reduced the

©LEACTIVEMATH Consortium 2005 Page 14 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Table
2.1:2-tailed

Pearson’s
correlations

coefficientm
atrix

show
ing

m
oderate

correlations
and

substantialrelationships.*
C

orre-
lation

is
significantatthe

0.05
level.**

C
orrelation

is
significantatthe

0.01
level.

D
ifficulty

Im
portance

of
m

at.
S’C

onfidence
S’Interest

S’A
ptitude

C
orrectness

S’Effort
K

now
ledge

D
ifficulty

1.000
.683**

.349**
.400**

.308**
.364**

.307**
-.446**

Im
portance

of
m

at.
1.000

.105
.458**

.358**
.266**

.264**
.-.332**

S’C
onfidence

1.000
.538**

.579**
.244**

.325**
.127*

S’Interest
1.000

.585**
.210**

.523**
.222**

S’A
ptitude

1.000
.283**

.555**
.194**

C
orrectness

1.000
.114*

.052

S’Effort
1.000

.128*

K
now

ledge
1.000

©LEACTIVEMATH Consortium 2005 Page 15 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Table 2.2: Rotated Component Matrix. Extraction Method: Principle Component
Analysis with Kaiser Normalisation. Rotation converged in 5 iterations.

Rescaled Component

1 2 3

Difficulty .305 .771 .261

Importance of mat. .287 .901 .105

S’ Confidence .660 -.072 .287

S’ Interest .798 .227 .093

S’ Aptitude .826 .069 .211

Correctness .134 .137 .959

S’ Effort .829 .086 -.112

Knowledge .317 -.636 .101

% of Variance: 34.7 23.6 17.7

number of modelled variables from 8 to 7. We ran the Principle Factor Analysis
again on the reduced data set. The result (shown in table 2.3) consisted of two
clearly defined groups. The first group accounted for 35.6% of variance and in-
cluded student aptitude (.829), student confidence (.777), student interest (.757),
and student effort (.731). The second group accounted for 28.4% of variance and
included importance of material (.864), difficulty of material (.850), and cor-
rectness of student answer (.576). The new groupings as well as the loadings
of variables on the groups is statistically much more satisfactory as it provides
clear indication of both the relationships between the variables and conforms to
the tentative groupings of the situational factors proposed in the deliverable D10.

2.3 Learner Model

The Learner Model (LM) component of xLM was designed to model a wide range
of learner qualifications, abilities and dispositions in relation to a subject domain,
and to accommodate to a variety of web-based and content-based e-learning sys-
tems. Our approach to the first goal is based on general knowledge of the human

©LEACTIVEMATH Consortium 2005 Page 16 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Table 2.3: Rotated Component Matrix. Extraction Method: Principle Component
Analysis with Kaiser Normalisation. Rotation converged in 3 iterations.

Rescaled Component

1 2

Difficulty .230 .850

Importance of mat. .154 .864

S’ Confidence .777 .092

S’ Interest .757 .339

S’ Aptitude .829 .219

Correctness .137 .576

S’ Effort .731 .139

% of Variance: 35.6 28.4

cognitive and emotional architecture (Stillings et al., 1995; Ortony et al., 1988) and
consists in structuring learner models as multi-dimensional, arranging their di-
mensions in a predefined way and representing qualifications and dispositions as
the application of some dimensions upon others. This allows LM to hold beliefs
on, for example, a learner’s competency on on the subject domain, their motiva-
tional dispositions towards training or exercising their competencies in a subject
domain, and their monitoring of their self-confidence in relation to a subject do-
main. The richness of the learner models depends in this way of the definition
of the internal structure of each one of their dimensions and the availability of
evidence to construct beliefs on their applications.
For the case of LEACTIVEMATH, the dimension corresponding to the subject do-
main is defined to cover a subset of Differential Calculus, qualifications are math-
ematical competencies (OECD, 2003), motivational dispositions were chosen on
the basis of the results from the studies reported in (Andrès et al., 2005) and
summarised in section 2.2, affective dispositions were suggested by mathemat-
ical educators in the project and meta-cognitive abilities have been been chosen
from the literature (Brown, 1987).
The second goal, to make xLM general and flexible enough to meet the needs of
a variety of web-based and content-base e-learning systems, is supported by the

©LEACTIVEMATH Consortium 2005 Page 17 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

multi-dimensional framework for learner models in the sense that the definitions
of the internal structure of its dimensions can be tailored to the needs of each
system, as it has been done for LEACTIVEMATH. In addition, representation
of beliefs in learner models has been chosen to meet the fact that open web-
based system can be reached by a wide variety of users, with such a diversity of
backgrounds that it makes difficult to initialise their models to a better default
other than complete ignorance on their characteristics. Belief representation in
LM is hence based on the Transferable Belief Model (TBM) (Smets and Kennes,
1994), a modern incarnation of the classic Dempster-Shafer Theory (Shafer, 1976)
which is able to represent uncertainty in beliefs, complete ignorance—no prior
probabilities as in Bayesian models, more commonly used for learner modelling
(Conati et al., 2002)—and amount of conflict in accumulated evidence.

2.4 Learner History

The learner history supports the diagnostic components by storing the learners’
interactions with the system. The interactions are tagged with a unique identifier,
thus allowing xLM to make justifiable its diagnostic reasoning. Furthermore, the
learner history offers a sophisticated query functionality to enable the diagnostic
components to make use of the learners’ past actions in their reasoning process.
For more details, please refer to deliverable D10 Student Model Specification
(Andrès et al., 2005).

©LEACTIVEMATH Consortium 2005 Page 18 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Chapter 3

Functionality

The Extended Learner Model (xLM) replaces in LEACTIVEMATH the learner
model component of ACTIVEMATH. Accordingly, xLM main tasks are

• to diagnose learner states and dispositions in relation to the subject domain
LEACTIVEMATH provides support for,

• to maintain a reliable model of them, as they evolve over time, and
• to deliver this information to other components in the system so that they

can better support learning with LEACTIVEMATH.
The principles behind the design of xLM have been explained in chapter 2, in-
cluding explanations of how xLM has been designed to diagnose and model
learners. More details of these functionalities are presented in chapter 4. This
chapter deals with the information on learner states and dispositions that is made
available by xLM to other LEACTIVEMATH components.

3.1 Diagnosis

The Description of Work for LEACTIVEMATH specifies that xLM diagnostic func-
tionality must include inferences of learners’ domain knowledge, as well as mo-
tivational, emotional and situational aspects of their learning (LeActiveMath,
2004, Task 4.4 on p. 35). A selection of the results from xLM diagnosis of learn-
ers are made available to the rest of LEACTIVEMATH through xLM application
program interface (API, section 3.3).

1. Learner’s needs of autonomy and approval in the current situation of the in-
teraction between the learner and a content item.

2. Learner’s competencies on the topics in the subject domain.

3. Learner’s motivational and affective dispositions towards the topics in the sub-
ject domain and towards competencies on the topics in the subject domain.

4. Learner’s meta-cognitive skills in relation to

(a) competencies on the topics in subject domain,

(b) motivational and affective dispositions towards the topics in the sub-
ject domain, and

©LEACTIVEMATH Consortium 2005 Page 19 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

(c) motivational and affective dispositions towards competencies on the
topics in the subject domain domain.

For the case of diagnosis of competencies, dispositions and meta-cognitive skills,
xLM can release the evidence supporting the diagnosis. More generally, the his-
tory of interaction between learners and LEACTIVEMATH that is used by xLM
for diagnosing learner states and dispositions is also available upon request.

3.2 Information interchange

The overall architecture of xLM is depicted in figure 3.1, where the components
that closely support xLM diagnostic functionality are shown in yellow (gray).
The Extended Learner Model is composed of three main parts: diagnostic, open
learner modelling and management. Both the diagnostic components and the
management components of xLM are described in this report, although the latter
ones are presented here from the perspective of their support to xLM diagnostic
functionality. The Open Learner Model, related components and their use of the
rest of xLM is described in deliverable D29 (Brna et al., 2005). The arrows con-
necting distinct components represent information interchange between compo-
nents. There are two basic types of information interchange, as explained in
deliverable D8 (Libbretch et al., 2005): procedure (method) calls, represented as
solid arrows, and event publications, represented by dotted arrows. In some cases
information interchanges of both types occur between two components, and a
dot-dash type of line is used to represent them in the figure.

• The main information interchange point between xLM and the rest of LE-
ACTIVEMATH is the xLM Manager, which interchanges events (dotted line)
with the LEACTIVEMATH Event Manager and provides a joint application
program interface (API) for the core diagnostic components of xLM: the Sit-
uation Model (SM), the Learner Model (LM) and the Learner History (LH).
A subset of this API is available to remote LEACTIVEMATH components via
XML-RPC, though xLM relies completely on LEACTIVEMATH for provision
of connectivity.

• The xLM Manager acts as a local event manager for xLM. In other words,
it collects all external events and distributes them locally, and almost all
xLM component send their events to xLM Manager for it to distribute them
both locally and to the LEACTIVEMATH Event Manager. The exception is
the Situation Model, which sends its events directly to the LEACTIVEMATH
Event Manager (see below).

• Procedure calls in between xLM components and other LEACTIVEMATH
components is indicated in figure 3.1 by the solid arrow on the left of the
xLM Manager. Nevertheless, access to LEACTIVEMATH components is

©LEACTIVEMATH Consortium 2005 Page 20 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

xLM

Manager

LeActiveMath
Event Manager

OLM GUI

Situational
Model

Learner
Model

OLM Core

SM Proxy

Learner
History

OLM
Controller

XML-RPC
API

Event
Manager

API

Procedure Call

Other
Components

Event Publication

Remote Call using XML-RPC

Figure 3.1: Overall architecture of xLM. Solid arrows represent procedure (method)
calls and dotted arrows represent event publication. Double-headed arrows stand
for remote procedure calls using XML-RPC.

©LEACTIVEMATH Consortium 2005 Page 21 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

more spread inside xLM than showed in the figure. Details of it will be
provided in chapter 4 when relevant for explanation of xLM diagnostic
functionality.

• The Situation Model (SM) is executed as an independent process, not nec-
essarily on the same computer where xLM is executed (section 4.2). SM
integration into xLM happens through a proxy inside xLM that receives all
information and requests send to SM. On the other hand, it became easier
for SM to send its events directly to the LEACTIVEMATH Event Manager
than to go through its proxy and then the xLM Manager.

• Similarly to SM, the Open Learner Model graphical user interface (OLM
GUI) is delivered to be executed on the learner’s computer, which is gener-
ally distinct from the server that executes LEACTIVEMATH. However, a big
part of OLM still runs on the server side—see (Brna et al., 2005) for details.

• All event interchange in between xLM components occurs via the xLM
Manager, as depicted in figure 3.1. Further information interchange via
method calls exists between components, sometimes directly and other
times indirectly through xLM Manager API.

3.3 Application program interface

The diagnostic functionality of xLM is made available to other LEACTIVEMATH
components through its application program interface (API), which is built by as-
sembling the API of the SM, LM, OLM and LH. The OLM API is described in
deliverable D29 (Brna et al., 2005) and it is not detailed here.

3.3.1 Situation Model

The diagnostic functionality of SM consists basically in the estimation of the
learner’s needs for autonomy and approval while interacting with LEACTIVE-
MATH content items (Andrès et al., 2005). Accordingly, SM API is limited to a
single method that provides such values encapsulated in an instance of the Face
class1.

public Face getFace(String userId);

3.3.2 Learner Model

The diagnostic functionality of LM consists in maintaining a model of the learn-
ers’ qualifications and dispositions towards a subject domain. Therefore, LM

1According to Brown and Levinson (1987), autonomy and approval constitute the public face
of individuals in a society.

©LEACTIVEMATH Consortium 2005 Page 22 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

provides basic facilities for managing such models, implemented as instances of
the class LearnerModel.

public void createLearnerModel(String learnerId)
throws NullPointerException;

public boolean existLearnerModel(String learnerId);

public void destroyLearnerModel(String learnerId);

public LearnerModel getLearnerModel(String learnerId);

In addition, LM provides facilities for accessing individual elements in the mod-
els, or beliefs, which are implemented as instances of the class Belief.

public Belief getBelief (String learnerId , BeliefDescriptor descriptor)
throws NullPointerException;

To request a belief, a LEACTIVEMATH component needs to provide a learner
identifier and a belief descriptor. The latter specifies the belief “coordinates” in
the learner modelling space. The entries in the belief descriptor should be se-
lected from the maps specifying the learner modelling dimensions (sections 2.3
and 4.3), otherwise LM responds with a belief standing for complete ignorance
(section 4.3.1).
LM beliefs are complex objects, represented as belief functions with numeric rep-
resentations for certainty, plausibility, ignorance and conflict, plus evidence sup-
porting them. Furthermore, LEACTIVEMATH components are most frequently
interested in “summaries” of beliefs, which are in essence decisions on what is
most likely the learner case. These are provided also by LM as summary beliefs,
which still include some measure of uncertainty, or learner levels, hard bets with
no trace of uncertainty in them.

public double getSummaryBelief(String learnerId,
BeliefDescriptor descriptor)

throws NullPointerException;

public int getSummaryLevel(String learnerId,
BeliefDescriptor descriptor)

throws NullPointerException;

Beliefs in xLM learner models include the evidence supporting them. Although
it can be requested directly from a belief recovered via getBelief, LM supplies it
on request via the following method.

public EvidenceSet getEvidence(String learnerId,
BeliefDescriptor descriptor);

©LEACTIVEMATH Consortium 2005 Page 23 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Some LEACTIVEMATH components need to know of learners qualifications and
dispositions in relation to content items—e.g. the motivation a learner may have
towards doing exercise X. This service is provided also by LM, which produces a
belief (or summary of it) by taking into account the characteristics of the content
item as described in the item’s metadata.

public Belief getBelief (String learnerId , String itemId)
throws NullPointerException;

public Belief getSummaryBelief(String learnerId, String itemId)
throws NullPointerException

public Belief getSummaryLevel(String learnerId, String itemId)
throws NullPointerException

In addition to the core diagnostic functionality described above, LM includes
facilities for recovering the individual maps that define the internal structure of
its learner models. The LM API includes methods of the form

public DimensionMap getMapDimension ();

where Dimension is a shorthand for any of the learner modelling dimensions (sec-
tion 4.3): Metacog, Affect, Motivation, Competency, CAPEs and Domain.

Differences with D10

The xLM API specified in deliverable D10 includes methods for recovering be-
liefs and collections of beliefs from learner models by specifying patterns for be-
lief descriptors instead of fully defined descriptors. This methods were included
in anticipation to any real need of them, leaving many details to be fulfilled once
the need had arisen, but so far it has not. Consequently, this section of the speci-
fied xLM API has not been implemented.
Another difference with D10 is the missing implementation of the method

List getCAPEs(learnerId,topicId).

Formally, it could have been implemented using the already available frame-
work (section 4.3), using the subject domain and CAPEs maps. In practice, to
implement it has been very difficult given the fact that misconceptions and com-
mon errors identified by authors have not been included in LEACTIVEMATH
content until very recently. This issues is further discussed in section 5.

3.3.3 Learner History

The support provided by LH to xLM diagnostic functionality consists in record-
ing all events relevant for learner diagnosis and delivering them on request. In-
formation can be recovered from LH either by specifying an identifier for an

©LEACTIVEMATH Consortium 2005 Page 24 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

event or by constructing a query—a HistoryQuery. In the latter case, filters must
be specified for the properties that events must have (including filters) and prop-
erties they must not have (excluding filters). Limits on event indexes in the list
of events—ordered chronologically—and maximum number of events to be re-
trieved can be specified, as well as requesting only the number of events that
match the query.

public ActivemathEvent fetchEvent(long id);

public List getHistoryEntries(HistoryQuery query);

public List getHistoryEntries(HistoryQuery query,
int firstResult , int maxResults);

public int getNumResults(HistoryQuery query);

LH provides an additional method as a shorthand for the common query on
whether or not a learner has already seen a content item.

boolean alreadySeen(String learnerId, String itemId);

©LEACTIVEMATH Consortium 2005 Page 25 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Chapter 4

Implementation

4.1 Introduction

This chapter presents the details of the design and implementation of xLM and
its individual components that build up its diagnostic functionality: the Situa-
tional Model (SM), the Learner Model (LM) and the Learner History (LH).
As LEACTIVEMATH, most of xLM is implemented using JAVA as programming
language, TOMCAT as the web server that hosts and interacts with xLM compo-
nents, and a collection of JAVA libraries, most of them shared with LEACTIVE-
MATH. Furthermore, most of xLM runs on the same computer (and JAVA virtual
machine) as the rest of LEACTIVEMATH, and it is fully integrated with it. The ex-
ceptions to the rule are the Situational Model and the Open Learner Model. The
former is implemented in C++ and runs as a separate process, not necessarily in
the same computer as LEACTIVEMATH (section 3.2). The latter is implemented
in JAVA but its graphical user interface runs as an applet inside the web browser
on the user’s computer (see Brna et al., 2005).

4.2 Situational Model

The specification detailed two components of the situational model:

1. The situational diagnosis agent (SDA)

2. The situation modeller component (SM-ler)

Whilst both of these two components of SM perform diagnostic functions, they
do so at different informational stages. The SDA is responsible for inferring the
values of the relevant situational variables based on the information available
about the student and their behaviour. The SM-ler, on the other hand, relies on
the values inferred by the SDA in order to perform the diagnosis of the situation
specified by the SDA in terms of autonomy and approval values. The auton-
omy and approval values are needed for informing the selection of appropriate
tutorial and politeness strategies by the Tutorial Component and the Dialogue
Manager respectively. In calculating the values of autonomy and approval, SM-
ler necessarily depends on the relationships that exist between the situational

©LEACTIVEMATH Consortium 2005 Page 26 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

variables and their specific values. Different combinations of these will impact
differently on autonomy and approval. For example, low level of student con-
fidence, high aptitude and incorrect answer may lead to diagnosis of a higher
autonomy and approval than low confidence, low aptitude and incorrect answer.

4.2.1 Design decisions

The design decisions for the situational model were made on an ongoing basis
throughout data analysis. One of the main decisions was made with respect to
the input variables to the model. Given the correlations analysis together with
the Principal Factor Analysis, we managed to establish a set of necessary vari-
ables reducing their number from the original 13 to 7. This was a crucial decisions
which was to ensure an easier and more perspicuous implementation of the sys-
tem. It was also to ensure the feasibility of the diagnosis of the variables’ values
based on information provided by other sub-components of LEACTIVEMATH.
The set of input variables to the situation model was determined as follows:

1. student’s confidence

2. correctness of student’s answer

3. student’s aptitude

4. student’s interest

5. difficulty of an exercise

6. importance of an exercise

7. student’s effort

The diagnosis of the values for each of the variables in the set follows the specifi-
cation given in the deliverable D10. For ease of reference we provide a reminder
of the basis used for diagnosing the values of the situational variables.
Thus, there are two types of variables modelled by the situational model: those of
which the values can be obtained from the metadata associated with concepts or
exercises stored in LEACTIVEMATH, and those of which the values need to be di-
agnosed based on the information provided by other components of the system.
The values of the factors correctness of the student answer, difficulty of material and
importance of material can be obtained from either the metadata associated with an
exercise or from the scenario type. Situational factors for which the values cannot
be obtained in this way include student confidence, student interest, student aptitude
and student effort. These are diagnosed by the situation diagnosis agent. Based on
the data analysis , we established seven main sources of evidence which tutors
tend to use to infer the values of the four situational factors:

©LEACTIVEMATH Consortium 2005 Page 27 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

1. Hesitation level which is established based on two variables:

• the elapsed time between the submission of tutor question or instruc-
tion and commencement of student response.

• the expected time for the commencement of a student response which
corresponds to the average response time established for that student.

2. Linguistic cues of which the specific instances are:

• use of interrogative forms in student answers (e.g. “?”, “...”).

• use of hedges, e.g. “maybe”.

3. Achievement level of which the estimation depends on three variables:

• a number of recent student exercises (or steps in an exercise) under
consideration (currently, based on our study analysis this number is
set to 4).

• degree of correctness (mark) for each exercise (or step in an exercise).

• adjacency of the same marks with the number of exercises or steps
considered.

4. Difficulty of material of which the variable is the rating of difficulty of a par-
ticular exercise obtained from the metadata associated with the current and
the previous exercise.

5. Spontaneous admissions which is established based on presence or absence in
student’s response of terms that refer their current motivational states, e.g.
statements of enjoyment, confusion, boredom, enthusiasm. The presence or
absence of specific terms is determined against a look up table established
based on the corpus collected in our studies.

6. Granularity of solution steps which is determined by comparing two vari-
ables:

• the number of steps taken by the student to present the solution.

• the number of steps represented in the correct path of the domain rea-
soner.

7. Student’s initiative of which the specific (optional) instances include:

• Student asks a clarification question.

Whilst a number of sources of evidence can be obtained without natural lan-
guage facilities, some sources are inherently dependent on natural language.

©LEACTIVEMATH Consortium 2005 Page 28 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

The latter type includes the linguistic cues, spontaneous admissions and stu-
dent initiative. Most of the seven sources of evidence can be obtained in LEAC-
TIVEMATH without any reliance on natural language dialogue. These include
hesitation level, achievement level, difficulty of material and granularity of so-
lution steps. The description of the prototype implementation presented in this
document does not include a facility for making inference based on the natural
language evidence. Such facility is currently unavailable.
The same source of evidence may be used to contribute to the diagnosis of more
than one factor. However, as shown in figure 4.1, the diagnosis of the individual
factors relies on a unique combination of the sources of evidence. Additionally,
our data analysis suggests that not all sources of evidence are considered to be
equally important by the tutors. Some sources of evidence generally contribute
more to the diagnosis of certain factors than other ones. This means that each
source of evidence may be assigned a weight reflecting its relative importance for
a particular diagnosis. In table 4.1 we provide a summary of the four factors
for which the values need to be determined by the SDA, the specific sources of
evidence that contribute to the diagnosis of each of the factors, and the weights
that represent tutors’ comments about the relative importance of each type of
evidence to the diagnosis of a value for a specific factor. The weights are given
on a scale from 1 to 5 where 1 means low and 5 means high.
In addition to the weights representing the relative importance of a source of
evidence to the diagnosis of a value of a situational variable, our study also sug-
gests that tutors take into account the frequency with which a particular type of
evidence occurs in an interaction. For example, hesitation evidence is taken more
seriously by the tutors if it is observed several times in the same interaction and
recently in relation to the current task, rather than if it occurs only once or if its
occurrence is not recent.
Ultimately, the overall importance of each source of evidence is calculated based
on a strength value which is determined by the frequency of occurrence within a
current session and on a relative importance value which indicates the relevance
of a source of evidence to a situational variable. As is described in section 4.2,
frequency of occurrence of a particular evidence is established dynamically and
cumulatively during a learner interacting with LEACTIVEMATH based on the
total number of occurrences of a particular type of evidence in a given interaction
and on the recency of such occurrence.
The most significant design decisions were made with respect to the shape and
functioning of the situational modeller. As will be discussed in section 4.2, the
burden of the calculations of autonomy and approval values, based on the input
values supplied to the situational modeller by the situational diagnosis agent,
was put on the Bayesian Network (BN) representation of the process shown in
figure 4.1. As will be also discussed in more detail in section 4.2, the main reason
for this was to secure representational and computational efficiency. To make
the effort of implementing the BN representation worth while, our design had

©LEACTIVEMATH Consortium 2005 Page 29 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Table 4.1: Importance of Evidence; 1 means low, 5 means high

FACTOR SOURCE OF EVIDENCE WEIGHT
Student Confidence:

Student hesitation 5
Linguistic cues 5
Spontaneous admissions 5
Student initiative 4
Granularity of solution steps 3

Student Interest:
Student initiative 5
Spontaneous admissions 5
Granularity of solution steps 4
Achievement 3

Student Effort:
Student initiative 5
Granularity of solution steps 5
Difficulty of material 4
Achievement 3

Student Aptitude:
Achievement 5
Difficulty of material 5

to meet certain criteria: (1) conciseness of the set of input variables, (2) clearly
defined relationships and a hierarchy of dependencies between input variables
and (3) a source and a mechanism for defining conditional probabilities of the
represented nodes.
The results of the data analysis allowed us to satisfy all three criteria. With re-
spect to the first criterion we already discussed the method for determining the
set of necessary input variables. The resulting seven situational variables rep-
resent the input to the situational modeller. In terms of BN representation this
means that they occupy the top-most, input position of the network. Follow-
ing Porayska-Pomsta (2003) and the comments made by our tutors throughout
verbal protocols, the representation of the relationships between the input vari-
ables assumes that all situational variables modelled affect how a given situation
is judged in terms of the autonomy (guidance) and approval required by a par-
ticular student in that situation. This is reflected in the fact that all input nodes

©LEACTIVEMATH Consortium 2005 Page 30 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Figure 4.1: The design of the Bayesian network for LEACTIVEMATH (GOG = Guid-
ance Oriented Goals, AOG = Approval Oriented Goals; f1 = Factor 1, f2 = Factor 2.

contribute to the calculation of autonomy and approval represented by the nodes
at the bottom-most level of the network. However, the way in which the nodes
are combined at the top of the network reflects the especially strong relationships
that exist between some, but not all, of the input variables as was determined by
the Principle Component Analysis.
The reason for combining situational variables is to yield child nodes that will
provide a bridge between the raw input variables such as correctness of student
answer or student confidence and the autonomy and approval values. Accord-
ing to Brown and Levinson’s version of the Politeness theory, autonomy and
approval values represent points on two socio-psychological dimensions rele-
vant to all people. These dimensions refer to people’s needs to be independent
in their actions whilst at the same time being approved of by others. When put
in the context of education, these two dimensions can be interpreted as the stu-
dents’ universal need to be given the freedom of initiative and the freedom to
explore the knowledge by themselves, while also obtaining approval for their
efforts from the tutors (Porayska-Pomsta, 2003). Because it is usually a tutor’s
objective to strike a balance between granting the needed freedom to the stu-
dents without causing them to flounder and to get frustrated, and because it is
typically their goal to provide appropriate praise without causing the students to
become either over-confident or to loose confidence altogether, an interpretation
of autonomy and approval as tutor goals can be afforded. In terms of the design
of the situational modeller then, the trick is to find a plausible mapping from the
input variables to the goals of providing the student with an appropriate degree
of autonomy and approval. This degree is to be expressed in terms of the prob-
ability of high and low autonomy, and the probability of high and low approval

©LEACTIVEMATH Consortium 2005 Page 31 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

being required in a specific situation.
In order to map between the situational variables and the autonomy and ap-
proval it is necessary to interpret them in terms of autonomy oriented goals (GOG,
i.e. to guide or not to guide the student) and approval oriented goals (AOG, i.e.
to approve or not to approve explicitly of the student). A small minority of the
situational variables lead to such interpretation directly. For example, based on
tutors’ comments and actions, if the importance or difficulty of material is high,
tutor goal is typically to provide more support in terms of guidance and hints.
This means that the autonomy given may be reduced in such a case. However a
vast majority of the variables modelled in the situational model need to be com-
bined with other variables in order to be interpreted meaningfully in terms of
autonomy and approval oriented goals. For example, in order to determine the
appropriate course of action based on the correctness of student answer, it may
be necessary to put it in the context of the variables such as difficulty and im-
portance of material respectively. When such combinations are attempted, basic
rules for combining the variables emerge, providing a way in which to populate
the conditional probability tables. It is the purpose of the qualitative analysis
to provide validation and to determine the post-conditions of such rules. The
description for the designing principles for the rules used to calculate the condi-
tional probabilities is given in the deliverable D10. However, the results of our
further analysis of the data informed the rules specified in D10 by the weights
with which each situational variable contributes to the post-condition of a rule.
As was also specified in D10, it is the weights and the numerically expressed
value of a variable that determine the outcome of combining two or more vari-
ables. For example, if the student answer is incorrect (val1), and the difficulty
of material is very difficult(val2), then the approval oriented goal based on dif-
ficulty might be to provide the student with a sufficient amount of approval in
order to prevent the student from being discouraged. The level of approval is
calculated by combining val1 and val2 along with their respective weights (W1
and W2) and by dividing them by 2. We used the results of the frequency analy-
sis to determine the weights of the individual variables. The weights represent
the overall relative importance of a variable to tutor feedback. In the case of our
example then, we can determine W1 to be approximately 0.59, whilst that of W2
to be around 0.84. The weights’ values refer to the relative importance of the
contributing factors.
In some cases, in order to obtain the desired interpretation of the situational vari-
ables in terms of tutor goals it is necessary to combine them with more than one
other variable. For example, the interpretation of the correctness of student an-
swer in terms of its guidance oriented goal involves both difficulty and impor-
tance of material (the second level in the network). The two interpretations are
then combined to yield an integrated guidance oriented goal evoked by the cor-
rectness of student answer variables. By the third level, such interpretations are
available for all input variables. In cases where the interpretation of a variable
depends on its combining with more than one factor, the weights are assigned to

©LEACTIVEMATH Consortium 2005 Page 32 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

the outcomes of each combination. Continuing with our example, a weight will
be assigned to the outcome of the combination of correctness of student answer
and difficulty of material, and another weight – to the correctness of student an-
swer and importance of material. These weights are also inferred based on the
results of the data analysis – this time on the strength of the correlations between
the relevant variables. In the case of correctness of student answer and difficulty
of material the weight is .364 and in the case of correctness and importance of
material, the weight is .683. As before, these weights along with the numerically
expressed values of the variables in question are used to calculate the condi-
tional probabilities which populate the tables of the corresponding nodes in the
network.
The fourth level of the network represents the two groups of factors determined
by the Principle Factor Analysis. Whilst all variables in each group contribute to
both guidance and approval oriented goals, not both groups contribute equally
to the calculation of autonomy and approval oriented goals. The conditional
probabilities of these nodes are calculated based on rules such as the ones used
for populating the nodes at the higher levels. The only difference is the source of
the weights associated with each input to a node, which in this case, represents
the loading of each variable onto a particular group. This interpretation of the
variable loadings was motivated by the results of the data analysis. In particu-
lar, our examination of the variables in both groups in conjunction with tutors’
interviews and their verbal protocols, resulted in the design decision to associate
group 1 with issues of student motivation and group 2 with pedagogical content
and student performance. To reflect this difference of reference in our design, we
used the loading of every variable onto each group as a measure of the its con-
tribution to the calculation of the autonomy and approval oriented goals. Thus
whilst the respective contributions of student confidence, student interest, stu-
dent aptitude and effort contribute more significantly to the overall value of the
approval oriented goal, difficulty of material, importance of material and correct-
ness of student answer contribute less to that goal. Conversely, the contributions
of the last three variables to the value of guidance oriented goal are greater than
of the former four variables.
The final level in our network design is the one comprising of the autonomy and
approval nodes. The same method as described earlier was used to populate
these two nodes with the exception of the source of the weight values of the con-
tributing states from the nodes at level four. In this case the weights represent
the significance of each of the groups obtained from the Principle Factor Analy-
sis, with the first group being more significant than the second group by virtue
of it accounting for more variance in the analysed data.

4.2.2 Implementation

The implementation of the situational model follows closely its design as speci-
fication. Three components have been implemented:

©LEACTIVEMATH Consortium 2005 Page 33 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

1. The situational diagnosis agent responsible for processing the information
obtained from other relevant components of the LEACTIVEMATH.

2. The situational modeller used for inferring autonomy and approval values.

3. The system of rules expressing the dependencies and their nature between
the situational variables modelled. The rules were used for populating the
conditional probability tables in the Bayesian network implementation of
the situational modeller.

The system of rules for populating the BN with conditional probabilities is a
stand alone system which neither relies on information from LEACTIVEMATH
nor does it contribute to it directly.
The implementation of the situational diagnosis agent and of the situational
modeller is integrated into one system called the situational model.
The situational model is implemented in C++. The choice of the programming
language was dictated primarily by our choice of the software package for build-
ing and manipulating the Bayesian network. The implementation of the situa-
tional model follows strictly the principles of object oriented programming as
shown in figure 4.2. It consists of 14 classes, 10 of which are directly concerned
with the situational diagnosis agent and LEACTIVEMATH event handling, 1 -
with managing the Bayesian network, 2 - with style and data management, and 1
class is concerned with managing the event traffic between the situational model
and LEACTIVEMATH. The last class enables integration of the situational model
with LEACTIVEMATH.
Figure 4.2 represents the implementation of the Situational Model including the
classes which enable the communication between the Situational Model and the
rest of the LEACTIVEMATH system. The XmlRpcServerMethods class is imple-
mented by the LEACTIVEMATH events.

The implementation of the situational diagnosis agent

In deliverable D10 and in chapter 2 we described the basis on which the situa-
tional diagnosis agent operates. Specifically we discussed the different sources
of evidence needed for inferring the values of student confidence, interest, effort
and aptitude. In the current implementation of the Situational Model prototype,
four out of the total seven sources of evidence are accounted for. These include
the difficulty of material, student hesitation, student achievement and granular-
ity of solution step. The three sources of evidence which are not as yet accounted
for are those which rely on the natural language facilities of the system to be
operational. Hooks will be provided for these to be added at a later point.
Some of the sources of evidence that are accounted for by the current implemen-
tation are provided directly by other components of LEACTIVEMATH. These
include the difficulty of material and granularity of solution step. Other sources

©LEACTIVEMATH Consortium 2005 Page 34 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Rules
Rules

Rules
Rules

Rules
Rules

Rules
Rules

process_m
essage

AB

M
eans: A

 contains B

 SD
A

M
essageBuffer

M
essageBuffer

M
essageBuffer

M
essageBuffer

M
essageBuffer

M
essageBuffer

M
essageBuffer

M
essageBuffer

AB

AB X
M

L−RPC Server

execute

X
M

L−RPC Server M
ethods

ExerciseStartedEvent
ExerciseStepEvent

ExerciseFinishedEvent
U

serBookPlannedEvent
StepsEvent

G
etFaceEvent

U
serLoggedO

utEvent

A
chievem

entD
ifficulty

CG
D

W
eighCalculator

Correctness
D

ifficulty
Im

portance
H

esitation
CG

H

N
etw

ork M
anager

D
SL N

etw
orks

M
eans: B im

plem
ents A

RunN
etw

ork

*

*

*
M

eans: A
 contains m

ore than one instance of B

(1) Processed M
essage

execute

X
M

L−Rpc Client

(2)Situational D
iagnosis

Situational D
iagnosis

Situational D
iagnosis

Figure
4.2:A

rchitecture
ofthe

im
plem

entation
ofthe

SituationalM
odel

©LEACTIVEMATH Consortium 2005 Page 35 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

of evidence need to be inferred based on the relevant information from the rest
of the system and sometimes on the information as to the other sources of ev-
idence. The dependent sources of evidence include student hesitation and stu-
dent achievement. In any case all information that is received from outside the
Situational Model, including the information that is not used as evidence for di-
agnosing situations, is provided in the form of an LEACTIVEMATH event. Event
handlers for the appropriate events receive the events and pass them to the rel-
evant classes elsewhere in the system. In sum the following LEACTIVEMATH
event handlers are registered in the Situational Model:

• ExerciseStartedEvent, which informs SM that an new exercise was started.
It is used to provide information about the difficulty of the material. It also
creates a copy of a Bayesian network for every learner for which such copy
does not already exist. The event is used to infer the value of student hesi-
tation.

• ExerciseFinishedEvent, which is used to infer the composites of the values
of student achievement, student aptitude, interest and effort. It is one of
the events that triggers the diagnosis of the situational variables to be sent
to the xLM. It carries the information about the success rate of the solutions
provided by the user. It is used to infer the composites of the values of
student achievement, student aptitude, interest and effort.

• ExerciseStepEvent, which provides information as to the difficulty of an ex-
ercise and the success rate. Just like the ExerciseFinishedEvent, it is an event
that triggers the diagnosed values of the situational variables to be sent to
the xLM. It is used to infer the values of student aptitude, interest, effort
and achievement.

• UserBookPlannedEvent,which provides information as to the importance
of material. It is used only by the Importance object which sets the im-
portance value to high if the Scenario type input value from the event is
ExamSimulation.

• UserLoggedOutEvent, which is used to inform the Situational Model about
the fact that the system is no longer in use by a specific user. This event
is used to ensure that system maintenance is carried out and that copies
of message buffers and copies of networks created for individual users at
run-time are deleted once the users log out.

Once an event is received from LEACTIVEMATH, the information that it contains
is sent to the relevant class for processing. The processing of the information is
carried out using methods and situational diagnosis rules specified in detail in
the deliverable D10. For each student in a given interaction (identified by the
UserID and ExerciseStartedID), the information contained in an ACTIVEMATH
event is stored in a message buffer. This facilitates easy access to the objects that

©LEACTIVEMATH Consortium 2005 Page 36 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

need to use such information to fire situational diagnosis rules. For example,
information about past events is needed to calculate the average time that a par-
ticular student typically spends on exercises. To provide a meaningful estimate
of a current level of student hesitation at a particular point in an interaction, it
is important to do the calculations on an ongoing basis and with reference to
all past events relevant to that interaction. Similarly, access to past events are
needed by the AchievementDifficulty class and by the WeightCalculator class. For
example, as was specified in the deliverable D10, the rules for infering student
achievement, student aptitude, interest and effort rely on the information about
correctness of student answer and on the difficulty of a given exercise. They also
rely on the information about up to 4 past instances of correct, incorrect and par-
tially correct student answer, and on the adjacency information, (e.g. whether the
past incorrect answer events occurred one after another). Finally, the WeighCal-
culator class uses the same facility to calculate the frequency of a particular source
of evidence occurring by storing information on all occurrences of a source of ev-
idence during a given interaction. As was explained in D10, the frequency is one
of the two values associated with a source of evidence which contribute to the
estimation of the total weight of the value of a situational variables being diag-
nosed. In summary, message buffers facilitate making the relevant calculations,
while by the same token they cut down on the overall processing time by elim-
inating the need for SM to communicate with LEACTIVEMATH every time the
relevant information is required by one of its objects. Message buffers are ob-
jects created at run-time and for every needy class and are deleted as soon as the
interaction ends. Such maintenance ensure the overall efficiency of the system.
Once the situational diagnosis is available and the sendFactorsToLeAM method
instantiates the XML-Rpc client, it sends the information about the values of the
situational variables diagnosed by calling the execute method. The situational
diagnosis is also sent to the situational modeller which, takes over the diagnosis
of a given situation by calculating the autonomy and approval values for that
situation.

The implementation of the situational modeller

For the Bayesian network the SMILE1 library was used which for certain plat-
forms, such as Microsoft Windows and Linux, comes with a graphical user inter-
face (GUI). The GUI (called GENIE) allows one to create the structure of Bayesian
networks without having to code them explicitly in C++ which, in the case of the
network presented in this chapter, would have been very cumbersome. Once the
structure of the network is in place, SMILE functions can be used to create code
which reads the network, writes the prior and conditional probabilities into the
individual nodes, sets evidence on the nodes and to run the network.

1Both SMILE and GENIE are decision-theoretic software and have been developed by the
Decision Systems Laboratory, at the University of Pittsburgh (DSL, 1999).

©LEACTIVEMATH Consortium 2005 Page 37 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

There are two main reasons why we chose the Bayesian network formalism.
First, Bayesian networks provide an efficient method for making decisions based
on some evidence from the real world. In that sense they provide an intuitively
natural way of reproducing certain diagnostic and decision making capabilities
of a human tutor. Since a Bayesian network can be considered as a probabilis-
tic expert system (e.g. Guo and Hsu, 2003), this ability is particularly suitable
for modelling tutors’ expertise in making judgements as to the characteristics of
an optimal response in a given situation. More importantly Bayesian networks
allow one to model complex dependencies between random variables in an effi-
cient manner. It is precisely the purpose of the current model to represent such
complex dependencies between situational variables and to use them to infer
the autonomy and approval values. In contrast with rule-based systems, for in-
stance, in which representing such dependencies would not only be very cum-
bersome, but also very difficult to inspect and to change, Bayesian networks pro-
vide a compact way of describing the entire distribution of the variables in terms
of manageable and inspectable probability tables (e.g. (Heckermann, 1996); (Guo
and Hsu, 2003))—they facilitate efficient storage of data.
Second, Bayesian networks have the ability to instantiate arbitrary subsets of
variables (regardless of whether or not they are fully specified or under-specified)
and to calculate the conditional distributions on another subset in order to make
a decision based on those distributions. In other words, just as they provide
an efficient way of storing large amounts of complex data, Bayesian networks
have the capability of performing inference in an efficient manner which is ide-
ally suited to the current problem. In the case of the situational modeller, the
conditional distributions of all the relevant stages in the process of making a de-
cision about the appropriate levels of autonomy and approval are based on the
instantiations of the situational variables provided as the input by the situational
diagnosis agent.
Given a representation of the Bayesian network in terms of a Genie graphical
representation, we relied on the C++ SMILE library to manipulate the network.
The main class which implements the methods for network manipulation is the
NetworkManager class. It is to this class that the diagnosis from the SDA is sent
for use as evidence to the network’s top-most nodes. The nodes represent the
situational variables modelled in LEACTIVEMATH.
Every node in a Bayesian network consists of at least two states. When evidence
is set on a node, only one state is flipped to TRUE, while the rest of the states
are flipped to FALSE. Specifically in relation to the current model, this is very
suitable for representing the mutual exclusiveness of situational variable-values
in the input nodes. In any given situation, the variable student’s confidence, for
example, may have a value very high confidence or high confidence, medium confi-
dence, etc., but nor more than one of the possible values simultaneously. In this
case, student confidence represents the node, while very high confidence and high
confidence, etc., represent two of its possible output states.

©LEACTIVEMATH Consortium 2005 Page 38 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

In the LEACTIVEMATH network, the nodes consist of conditional probability ta-
bles, whereby there are up to 5 output states depending on the actual variable
represented by a given node. The states for all the top-level nodes in the net-
work represent the possible values of the situational variables modelled.
Every node in the network carries information in the form of a probability table,
which expresses the probability of a node being in one of the pre-specified states.
If a node represents pre-conditions only, its definition will consist of a number
of fully specified possible states, along with their marginal probabilities. For
example, if a node A with the states a1 and a2, does not have any parents, its
probability table will merely express the respective probabilities of a1 and a2 (see
figure 4.3). In our network, all of the top-most nodes represent preconditions.
The marginal probabilities associated with each output state in such a node are
the same for each state and when summed they add up to 1. This is to reflect
the fact that a priori any such state has an equal chance of being observed. When
such observation occurs, evidence is set on the node, and the appropriate state is
selected. The value of such a state is therefore flipped to 1 and the values of the
remaining states are flipped to 0. If nodes are connected, the output states of the
parent nodes constitute the input states to the children nodes.
If a node represents a rule, the definition will consists of a number of its possi-
ble states, all of the combinations of all the states of that node’s pre-conditions
(i.e. the parent nodes) and prior, conditional probabilities for every such combi-
nation. For example, if a node C with the possible states c1 and c2 is a child of
A and B with the states a1, a2, and b1, b2 respectively, then the probability table
for node B will express the respective probabilities of c1 and c2 given a1 and b1,
then given a1 and b2, then a2 and b1, and finally a2 and b2. This is illustrated in
figure 4.3. The calculation of the marginal probability of the state c1 would take
the form of the equation in 4.1.

P(c1) = (P(PrA1) ∗ P(PrB1) ∗ P(c1|PrA1, PrB1)) (4.1)
+(P(PrA1) ∗ P(PrB2) ∗ P(c1|PrA1, PrB2))
+(P(PrA2) ∗ P(PrB1) ∗ P(c1|PrA2, PrB1))
+(P(PrA2) ∗ P(PrB2) ∗ P(c1|PrA2, PrB2)).

Whilst, theoretically, there is no limit on the number of possible states that a
node may have, an increase in the number of possible states will lead to an in-
crease in the complexity of the definitions of its children nodes which may also
increase the complexity of the inference needed to propagate the values through
a network. The complexity of the definitions of children nodes increases expo-
nentially if a child node depends on two or more parent nodes. This is why in
the LEACTIVEMATH network we allow only four parents per node. This also en-
sures that our rules for populating the tables are inspectable and easy to modify,
should the need for such an inspection and modification arise.

©LEACTIVEMATH Consortium 2005 Page 39 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Condition A

Condition B

a2

Pr4 Pr8

Node A

a1

Node B

b1

PrA2

PrB1

PrB2b2

c1

c2

Pr1

Pr2

a1

b1

a1

b2 b1

a2

b2

Pr5Pr 3 Pr7

Pr6

Node C

a2

PrA1
A B

C

Figure 4.3: An example of a simple three-node network.

The running of the network happens after the appropriate evidence is supplied.
Running the network means propagating the evidence through the network by
means of an appropriate probabilistic inference algorithm.
There are several inference algorithms available to the designers of Bayesian net-
works. The most commonly used is the type of algorithm proposed by (Lauritzen
and Spiegelhalter, 1988) and further developed by (Jensen, 1996) amongst others.
In this type of algorithm a Bayesian network is transformed into a tree in which
each node corresponds to a subset of variables in the transformed network. The
transformation into a tree is sometimes necessary to avoid an infinite loop in
the propagation of values across the nodes. Such a problem can arise in cases
where in the Bayesian network there exists an acyclic loop between the nodes.
The choice of an algorithm typically depends on the size of a given network. For
larger networks it is best to use an algorithm which exploits stochastic sampling
methods such as those proposed by (Henrion, 1988), (Shachter and Peot, 1990)
or (Fung and Del Favero, 1994). The Lauritzen-Spiegelhalter algorithm is suit-
able primarily for relatively small-sized networks (DSL, 1999). This is also the
algorithm used in the current implementation.
Once the evidence is set and propagated through the network, the values of the
output states of its bottom-most nodes can be inspected. These nodes represent
the autonomy and approval dimensions, whilst the values of their output states
represent the likelihood of their occurrence given the input situation. In the case
of autonomy and approval nodes, these states are autonomy, no autonomy, and
approval, no approval respectively. The autonomy and approval values sent to LE-
ACTIVEMATH will always be those corresponding to the output states autonomy
and approval.
An important feature of the NetworkManager is the fact that it allows for multi-
ple copies of the network to be maintained simultaneously. This is necessary to
enable modelling of the immediate situations for a number of users at the same
time, thereby conforming to the requirements of the overall system. When a new
user logs in to LEACTIVEMATH, a copy of the uninitialised network is created

©LEACTIVEMATH Consortium 2005 Page 40 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

XML−RpcServerXML−RpcClient

Situational Diagnosis

LeActiveMath

NetworkManagerXML−RpcServerMethods

RunNetwork()

(1) LEAMEvent

(2) Situational Diagnosis

(3) Situational Diagnosis

(4) Results from the Nerwork

execute()

XML−Rpc Input Value
XML−Rpc Output Value

ExerciseStepEvent
GetFaceEvent

execute()

SDA

GetSituationalDiagnosis()
DiagnoseFactorValues()

Figure 4.4: The overall path from the point an event is received from LEACTIVE-
MATH to the point at which the output of SM is provided.

for them and is kept private to their session. The copy of the network is deleted
at the end of every interaction, at the point when the situational model receives
the UserLoggedOutEvent from LEACTIVEMATH.

4.2.3 The flow of information within the Situational Model

Given the overview of the system implementation architecture the path from the
point at which an event is received from LEACTIVEMATH to the output values
of autonomy and approval is illustrated in figure 4.4. As was explained earlier,
the LEACTIVEMATH events constitute the basis for all diagnosis done by the
Situational Diagnosis Agent (SDA).
The event handling classes (for example ExerciseStepEvent) all implement Xml-
RpcServerMethod which allows them to be registered with the XmlRpcServer
object created at the start of program execution. The XmlRpcServer communi-
cates with the XlmEventManager. This server object binds itself to a port (cur-
rently 27777) and listens for incoming traffic from XlmEventManager. When
a message is received from the XlmEventManager the server works out which

©LEACTIVEMATH Consortium 2005 Page 41 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

of the XmlRpcServerMethod objects it contains. These will be one of Exercis-
eStartedEvent, ExerciseFinishedEvent, ExerciseStepEvent, UserBookPlannedE-
vent and UserLiggedOutEvent. It then handles the particular message and calls
its execute method, passing the message as an input parameter to the Situational
Model’s situational diagnosis agent (SDA). In the case of the example illustrated
in the figure the event received is the ExerciseStepEvent.
The event handlers execute methods translate the incoming message from an
XmlRpcValue to an AMEvent, which then gets passed into SDA for processing.
This is where all the Situational Model’s internal processes take place. These
involves calling DiagnoseFactorValues and GetSituationalDiagnosis methods on
SDA. ExerciseStepEvent carries the information as to the timestamp of the event,
userID, exerciseID, the difficulty of the exercise and the success rate of the solution
provided by the learner. This information is used by the SDA which manages all
the classes that are responsible for performing situational diagnoses. Specifically,
the timestamp information is used by the Hesitation class which is responsible for
diagnosis the level of student hesitation in a manner which has been described
earlier.
The success rate, which is expressed in terms of numerical values between 0 and 1,
is first of all mapped onto the fuzzy-linguistic correctness values correct, incorrect
and partially correct. This mapping involves the following rules:

(nSuccessRate < 0.3)
correctness = Incorrect ;

(nSuccessRate < 0.6)
correctness = Pcorrect;

else
correctness = Correct;

Difficulty and success rate are pushed from the SDA class into the Difficulty and
correctness classes and to the AchievementDifficulty class respectively. No infer-
ence is performed by the correctness and difficulty objects. AchievementDifficulty
class contains many inference rules—it is the largest situational diagnoses class.
The AchivementDifficulty class is responsible for diagnosing student aptitude, in-
terest, effort and achievement. In turn, student achievement is used by the GCD
(GranularityCorrectnessDifficulty) class in conjunction with the granularity of the
solution provided by the student to infer student interest.
The situational values diagnosed by the individual classes are passed back to
the SDA where they are consolidated through weighted means functions. The
consolidate values are the final values which constitute the situational diagnoses
ready to be passed on to the xLM and the rest of the LEACTIVEMATH.
The situational diagnosis returned is also passed on to the NetworkManager
which is responsible for running the network. The results of running the net-
work are passed back to LEACTIVEMATH via the return parameter of the event
handler for GetFaceEvent, a special type of event used by the SM proxy inside

©LEACTIVEMATH Consortium 2005 Page 42 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

xLM to recover information from the SM-ler. Events of this type are empty, faked
events send to the SM XmlRpcServer object every time there is request for the
current recommendations for autonomy and approval. The results of running
the Bayesian network are passed back to SM-proxy via the return parameter of
the event handler for GetFace events.

4.3 Learner Model

In LM, a learner model is a collection of beliefs about the learner’s states and dis-
positions arranged along six dimensions (see figure 4.5): subject domain, compe-
tency, motivation, affect, meta-cognition and conceptual and procedural errors
(CAPEs). Each of these dimensions is described in a concept map which speci-

Subject Domain

Competency

Motivation / Affect

Metacognition
C

on
ce

pt
ua

l a
nd

Pr

oc
ed

ur
al

 E
rr

or
s

(C
A

PE
s)

Figure 4.5: A multi-dimensional and layered structure for learner models.

fies the individual factors in the dimension relevant to learning and considered
in LM learner models—the maps used in the current implementation of LM are
included in appendix A. The maps also specify how distinct factors in each di-
mension relate to each other. For example, in the current implementation the
subject domain is a branch of mathematics known as Differential Calculus and
breaks down into domain topics such as ‘function’, ‘derivative’ and ‘chain rule’;
competency is mathematical and decomposes according to the PISA framework
(OECD, 2003), and motivation decomposes into factors that are considered to in-
fluence learner motivation, such as their interest, confidence and effort put into
learning the subject domain and mathematical competencies.
The layered structure of learner models in LM specifies how the modelled di-
mensions interact with each other. At the bottom of the stack is the subject do-
main, underlining the fact that learner modelling occurs within a subject domain.
Nevertheless, a learner model does not hold any belief about the subject domain
per se. but beliefs about learner dimensions applied to the domain. Hence, on top

©LEACTIVEMATH Consortium 2005 Page 43 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

of the subject domain are the layers of competency, motivation, affect and meta-
cognition, each one relying on the lower layers for expressing a wide range of
beliefs about the learner in relation to:

• mathematical competencies on the subject domain (e.g. the learner’s level
of problem solving with the chain rule);

• motivational dispositions towards the subject domain (e.g. the learner’s
level of confidence in relation to differential calculus) or towards compe-
tencies on the subject domain (e.g. the learner’s level of effort in solving
problems with derivatives);

• affective dispositions towards the subject domain (e.g. the learner’s level
of anxiety in relation to functions) or towards competencies on the domain
(e.g. the learner’s level of satisfaction in relation to solving problems with
the chain rule);

• meta-cognitive skills with respect to competencies on the subject domain
(e.g. the learner’s ability to monitor their competence to solve problems
using the chain rule);

• meta-cognitive skills with respect to motivational dispositions towards the
subject domain or towards competencies on the domain (e.g. the learner’s
ability to control their confidence on their competency on differential cal-
culus);

• meta-cognitive skills with respect to affective dispositions towards the do-
main or towards competencies on the domain (e.g. the learner’s ability to
monitor their satisfaction with respect to solving problems with deriva-
tives).

Conceptual and procedural errors (CAPEs) is a special dimension, somehow in
between competency and the subject domain. CAPEs are not generic, as com-
petencies, but specific to particular domain topics, hence their applications to
the domain are predefined. Moreover, neither motivation nor affect nor meta-
cognition apply to CAPEs, under the assumption that they are not perceived by
learners.
The internal structure of each dimension is defined in its map and is used by LM
for specifying the beliefs it can hold, as well as for specifying relations in between
beliefs that are used for propagating evidence among them (section 4.3.3). The
maps currently in use by LM are included in appendix A.

4.3.1 Levels and beliefs

For simplicity of explanation, let us assume we are talking about a belief in a
learner model concerning the learner’s competency in posing and solving mathemati-
cal problems with derivatives. Mathematical competencies of learners are measured

©LEACTIVEMATH Consortium 2005 Page 44 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

in a discrete scale of four levels, from an entry level I to a top level IV, borrow-
ing from the encoding of competency level in content metadata, as described in
deliverable D6 (Godauze, 2005). The mathematical competency of a learner is
considered be at one of these levels, having achieved and passed all previous lev-
els. Consequently, a belief on the learner’s competency to pose and solve prob-
lems with derivatives is represented in LM as the equivalent to a statement about
which level the learner’s competency in posing and solving mathematical problems with
derivatives is more likely at.
Generalising the example above, every belief in LM is about a learner’s level on
something, as far as that something can be expressed as the application of upper
dimensions to lower dimensions in the learner modelling framework (figure 4.5).
All dimensions in LM are measured in a similar scale of four levels, from an entry
level I to a top level IV.

Belief functions

There are many ways to represent beliefs such as the ones stored in LM. A sym-
bolic representation using a simple logical formalism would look something like

B(solve(derivative), II).

A numeric representation using probabilities would assign a probability to each
possible level, looking something like

B(solve(derivative), p(I, 0.1), p(II, 0.60), p(III, 0.25), p(IV, 0.05)).

In LM, a belief in a learner model is represented and updated using a numeric
formalism known as the Transferable Belief Model (TBM) (Smets and Kennes,
1994), a variation of Dempster-Shafer Theory (DST) (Shafer, 1976). TBM and DST
use belief functions instead of probability distributions. A first difference between
a probability distribution and a belief functions is that, while the former assigns
a number in the range of [0, 1] to each possible state of the world—e.g. each level
the learner’s competency could be at—the latter does the same but to each set
of possible states of the world. More formally, if we call Θ the set of all possible
states of the world,

Θ = {I, II, III, IV}, (4.2)

then a probability distribution is a function p from Θ to [0, 1], whereas a belief
function b goes from the set of all sets of levels in Θ to [0, 1],

b : 2Θ → [0, 1]. (4.3)

Mass, belief and plausibility A belief in a learner model can be represented at
least in three different ways, as a mass, a certainty or a plausibility function, three

©LEACTIVEMATH Consortium 2005 Page 45 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

types of belief functions2. Although they are equivalent, a mass function is the
easiest to manipulate computationally and hence is the one used in LM.
If s0 is a set of levels, say s0 = {III, IV}, the mass of s0, or m(s0) can be interpreted
either subjectively or objectively.

• Objectively, as the support the evidence gives to the case that the true com-
petency level of the learner is in the set s0 (i.e. it is either III or IV) without
making any distinction between the elements of the set3.

• Subjectively, as the part of the belief that pertains exclusively to the likeli-
hood that the true learner’s competency level is in s0, without being any
more specific towards either of the levels.

A mass function in LM is generally required to satisfy the requirement that the
sum of all its values must be one; i.e.

m : 2Θ → [0, 1] such that ∑
s∈2Θ

m(s) = 1. (4.4)

However—as in TBM and differently from DST—the mass assigned to the empty
set does not have to be zero, and it is interpreted in LM as the amount of conflict
in the evidence accumulated4. The mass assigned to the set of all possible levels
Θ is generally interpreted as the amount of complete ignorance in a belief.

4.3.2 Evidence

Evidence for learner modelling comes into LM in the shape of events, mostly rep-
resenting what has happened in the learners interaction with educational mate-
rial and the rest of LEACTIVEMATH. Some events comes from inside xLM, as is
the case for events generated by the Situational Model and Open Learner Model.
Events are raw evidence that needs to be interpreted in order to produce mass
functions that can be incorporated into beliefs in learner models using a combi-
nation rule (Sentz and Ferson, 2002). Currently, two categories of events are in-
terpreted by LM and their evidence incorporated into beliefs: behavioural events
and diagnostic events. Events in the first category simply report what the learner
has done or achieved, whereas events in the second category report a judgement
of learner levels produced by some diagnostic component of LEACTIVEMATH.

2We call certainty function what is more more commonly known as a (proper) belief function.
We do this to avoid the confusions between LM beliefs, generic belief functions and a particular
type of belief function.

3Imagine Theta is an international tennis team composed by Indian Papus (I), Japanese Takuji
(II), Scottish Hamish (III) and French Pierre (IV). They have played against the American Dream
Team and you hear on the radio than all of them, except a European one, have lost their matches.
If this is all the evidence you have about who in Theta won its match, it certainly supports the
case that the player is in the set {Hamish, Pierre} but does not distinguish between them.

4This is supported by the close world assumption that Θ is the set of all possible levels.

©LEACTIVEMATH Consortium 2005 Page 46 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Interpretation of behavioural events

Given an event of type ExerciseFinished, reporting that a learner has finished
an exercise with some success rate, LM interprets it to produce evidence for up-
dating the learner model. The resulting evidence would be a collection of mass
functions over the following set5:

Φ = {{I}, {II}, {III}, {IV}, {I, II}, {II, III}, {III, IV},
{I, II, III}, {II, III, IV}, {I, II, III, IV}}.

(4.5)

For the particular case of an event of type ExerciseFinished in the current im-
plementation of LM, these levels are actually competency levels. In the general
case, the nature of the levels will depend on the nature of the belief the evidence
is relevant to—conceptual or procedural error (CAPE), competency, motivation,
affect or meta-cognition levels.
In order to make the explanation easier to follow, let us consider a concrete case:
interpreting an ExerciseFinished event that resulted from the learner finishing
an exercise with metadata as in listing 1. An ExerciseFinished event comes with
its own additional information:

• learner identifier,
• exercise identifier,
• session identifier, and
• success rate achieved by the learner in the exercise (in the range [0, 1]).

Beliefs addressed By interpreting events of type ExerciseFinished, LM gen-
erates direct evidence for beliefs grounded on the subject domain topics the ex-
ercise is for, or depends on. For example, the exercise K3_TIMSS is for a learning
object with identifier deriv_higher/ def_nthdiff , which is mapped to the domain
topic higher_derivative that represents the abstract notion of higher order deriva-
tive. The metadata listed above indicates the exercise depends on the learning
object deriv / def_diff_f which is mapped to the topic derivative that stands for the
abstract notion of derivative. Consequently, all direct evidence produced from an
ExerciseFinished event from this exercise will be evidence for beliefs grounded
on the topics derivative and second_derivative.
Metadata indicating which mathematical competencies the exercise trains on,
or evaluates, provides further details of which beliefs should be affected by the
event. For the example at hand, this are beliefs on competencies generalise
(a sub-competency of think mathematically) and decode (a sub-competency of
model mathematically)—see map for mathematical competency in appendix A.
Metadata on competency level, on the other hand, does not affect the selection

5Technically, the domain of a mass function is 2Θ = {s|s ⊆ Θ}. However, given the fact that
levels are ranked it makes no sense to have mass for sets that are not intervals, such as {I, III}. In
other words, the focus of m is always going to be a subset of Φ, which in turn is a subset of 2Θ.

©LEACTIVEMATH Consortium 2005 Page 47 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Listing 1: Example metadata for an exercise.

<exercise id="scq_K3_TIMSS" for="deriv_higher/def_nthdiff">
<metadata>

<Title xml:lang="en">
Acceleration of a straight forward movement

</ Title >
...
<extradata>

<depends−on><ref xref="deriv/def_diff_f"/></depends−on>
<learningcontext value="secondary_education"/>
...
< field value="physics"/>
< difficulty value="easy"/>
<competency value="think" subvalue="generalize"/>
<competency value="model" subvalue="decode"/>
<competencylevel value="simple_conceptual"/>
<typicallearningtime value="00:00:20"/>
<representation value="verbal"/>
<abstractness value="neutral"/>

</extradata>
</metadata>

...
</exercise>

of beliefs but the actual production of evidence for the chosen beliefs. Therefore,
the beliefs to be directly affected by our example of event would be beliefs related
to the learner’s generalisation of results and decoding mathematical models involving
first order and higher order derivatives.
Those beliefs could be directly on the learner’s competencies, on their moti-
vational or affective dispositions towards these competencies, on their meta-
cognitive skills in relation to these competencies, etc. On the other hand, no
belief on a conceptual or procedural error will be directly affected, since events
of type ExerciseFinished do not provide any information on CAPEs (CAPEs are
reported by events of type ExerciseStep). In the current implementation of LM
only evidence for beliefs on learners’ mathematical competencies on the sub-
ject domain will be produced from events of type ExerciseFinished. The mo-
tivational evidence in ExerciseFinished events is extracted by the Situational
Model and delivered as SituationFactorChanged events to LM. The affective con-
sequences of finishing the exercise are reported by learners themselves through
LEACTIVEMATH Self-Report Tool, which delivers SelfAssessment events to LM.
Finally, modelling of learners’ meta-cognition by LM depends on OLMMetacog

©LEACTIVEMATH Consortium 2005 Page 48 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Table 4.2: Effect of the metadata value for competency level on the estimated diffi-
culty of an exercise for a learner at a given competency level.

Competency level Competency level of learner
of exercise I II III IV
I - - very easy very easy
II - - - very easy
III very difficult - - -
IV very difficult very difficult - -

events produced by the Open Learner Model component.

Generation of evidence Once the beliefs to be affected by an event have been
identified, the next step is to generate the corresponding evidence: a mass func-
tion per belief over the sets of levels in Φ. Although most of the metadata of an
exercise could have an impact on the evidence to be produced, the production of
a piece of evidence from an ExerciseFinished event in the current implementa-
tion of LM only takes into account

• the relationship between the exercise and the belief addressed (i.e. whether
the exercise is for the topic the belief is about, or only depends on it),

• the competency level of the exercise,
• the difficulty of the exercise and
• the success rate reported in the event.

The competency level of an exercise is used to determine who should find the
exercise either very easy or very difficulty, and who may find it otherwise (i.e.
easy, medium or difficult, the remaining grades of difficulty in LEACTIVEMATH
vocabulary for metadata on the difficulty of exercises). For example, exercise
K3_TIMSS being an easy exercise for competency level II (simple conceptual)
means it should be a very easy exercise for any learner with competency level
IV. That would be the case even if the exercise were a very difficult one, given
the differences between levels II and IV. Table 4.2 presents an initial estimation
of the difficulty of an exercise for a learner, given the competency levels of the
exercise and the learner. In other words, the competency level of an exercise
sets the shape for a probability assignment function (for being successful in an
exercise) outside the critical area surrounding the point with coordinates given
by the competency level and difficulty of the exercise (the main diagonal in ta-
ble 4.2). The metadata for difficulty of the exercise helps to fill the missing cells
in table 4.2. A possible interpretation of these metadata is given in table 4.3.
At this stage, knowing the metadata for an exercise such as K3_TIMSS provides
estimates of how difficult that exercise would be for learners with different com-
petency levels. For exercise K3_TIMSS the estimates are

©LEACTIVEMATH Consortium 2005 Page 49 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Table 4.3: Effect of the metadata value for difficulty on the estimated difficulty of an
exercise for a learner at a given competency level.

Exercise Difficulty of the exercise
for a learner at a given competency level

competency level difficulty I II III IV
VE VE VE VE VE
E E VE VE VE

I M M VE VE VE
D D E VE VE

VD VD M VE VE
VE M VE VE VE
E D E VE VE

II M VD M VE VE
D VD D E VE

VD VD VD M VE
VE VD M VE VE
E VD D E VE

III M VD VD M VE
D VD VD D E

VD VD VD VD M
VE VD VD M VE
E VD VD D E

IV M VD VD VD M
D VD VD VD D

VD VD VD VD VD

Learner’s competency level Difficulty of exercise K3_TIMSS
I difficult
II easy
III very easy
IV very easy

We can see that the exercise does not discriminate between learners with compe-
tency level III or higher. Hence, mass should not be assigned to levels III nor IV
alone, but only to the set {III, IV} or sets containing it.
Here is the point when LM needs to translate the qualitative tags denoting diffi-
culty into quantitative measures. In other words, it needs to estimate, for every
rate of success r, the probability P of achieving r given difficulty d. It needs to
estimate P(r|d). This can be done in many ways, but LM uses a bell-shaped

©LEACTIVEMATH Consortium 2005 Page 50 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.25 0.5 0.75 1

Pr
ob

ab
ilit

y

Success rate

Very easy
Easy

Medium
Difficult

Very difficult

Figure 4.6: Probability assignment functions for each degree of difficulty.

function
P(r) = δe−(r−µ)2/2δ2

with parameters determined by difficulty as specified in table 4.4. This function
gives a 0.5 probability to being completely successful (r = 1) in a very easy ex-
ercise, and the same probability to being moderately successful (r = 0.75) in an
easy exercise, just fair (r = 0.5) in a medium exercise, unsuccessful (r = 0.25) in
a difficult exercise and completely unsuccessful (r = 0) in a very difficult one.
The collection of probability assignment functions for each degree of difficulty is
show in figure 4.6.

Table 4.4: Parameters for normal distribution per difficulty value.

Difficulty Parameters
µ δ

very easy 1 0.5
easy 0.75 0.5
medium 0.5 0.5
difficult 0.25 0.5
very difficult 0 0.5

For example, if the success rate reported in an ExerciseFinished event for exercise
K3_TIMSS is r = 0.8 then we get the following probabilities per competency
level: 0.2730 (I), 0.4975 (II) and 0.4615 (III and IV).
An easy way of translating this probabilities into a mass function would be by
normalising the probabilities obtained above and assigning them to the single-
tons {I}, {II}, {III} and {IV}. However, as it was said before, exercise K3_TIMSS

©LEACTIVEMATH Consortium 2005 Page 51 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

does not distinguish between learners with competency levels III or IV, hence it
does not provide evidence for the learner having any of these levels in particular
but, in any case, just of having any of them. What should be done if all prob-
abilities above where the same? A possibility, in analogy to the previous case,
is to consider the exercise as unable to discriminate between the possible levels
of competency of the learner, and hence to interpret it as providing no new evi-
dence at all. Technically, this means the mass distribution in this case should be
the one corresponding to total ignorance (or complete lack of evidence):

m(Θ) = 1 and m(s) = 0 for all other s 6= Θ. (4.6)

We can generalise these two cases to an iterative method for calculating a mass
functions from probabilities:

1. If there are levels l1, l2, . . . , ln with non zero probabilities, then take all of
them into a set s = {l1, l2, . . . , ln} and make m(s) equal to the smallest prob-
ability, i.e. m(s) = min(p(l1), p(l2), . . . , p(ln)).

2. For every level li in s make its probability equal to p(li)−m(s). This would
reduce to zero the probability of at least one level.

3. Remove from s all levels with re-calculated probability equal to zero and
start again at step (1).

4. Finally, scale all m(s), s ⊆ Φ, uniformly, so that the total mass ∑s⊆Φ m(s) =
1.

The first step takes the evidence that the event distributes equally among the
competency levels it gives evidence of, and puts it into the set of these levels.
The second step removes the shared evidence from these levels and the third
step removes the levels that have no further evidence supporting them.
The application of this method to the case of exercise K3_TIMSS with success
rate of 0.8 and the probabilities calculated above would produce the following
mass function:

m({I, II, III, IV}) = 0.549,
m({II, III, IV}) = 0.379,

m({II}) = 0.072,
m(s) = 0.0 for any other s ⊂ Φ.

In words, this is weak evidence for the learner being at competency level II
(simple-conceptual) and stronger evidence for they being at a competency level
in {II, III, IV}. However, the mass function includes a fair amount of ignorance
that suggest it is still plausible for the learner to be at any competency level,
including level I.

©LEACTIVEMATH Consortium 2005 Page 52 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Each belief that have to do with topics trained on, or evaluated by the exercise
would receive such an evidence. Beliefs concerning topics the exercise depends
on would receive a discounted evidence with increased ignorance:

m′(s) = d×m(s) for all s ⊆ Θ and then
m′(Θ) = m(Θ) + (1− d),

(4.7)

where d is a discount factor in between zero and one.

Interpreting diagnostic events

The interpretation of diagnostic events by LM is simpler than the interpretation
of behavioural events given the fact that an estimation of the learner level is in-
cluded in diagnostic events. Based on how much LM trust the source of the
event, the original estimation of the learner level is transformed into a proba-
bility distribution over the set of levels Θ. This probability distribution is then
transformed into a mass function following the same procedure as explained in
section 4.3.2.
Consider, for example, the case of LEACTIVEMATH Self-Report Tool, which is
presented to learners every time they complete an exercise so that they can pro-
vide feedback on their states of liking, pride and satisfaction—which are as-
sumed to be with respect to the exercise just finished. The values input by the
learners are reported to LM in SelfReport events. Then LM transform a single
value per factor into a probability distribution by choosing a suitable Beta distri-
bution6 from the collection shown in figure 4.7.
The mass function resulting from the interpretation of the event would constitute
evidence for beliefs on the learner’s affective dispositions towards the subject do-
main topics and competencies that result from considering the exercise metadata,
as explained in section 4.3.2.

4.3.3 Propagation of evidence

Interpretation of events such as the ones described in section 4.3.2 provides direct
evidences for some beliefs in a learner model. These evidences are propagated
to the relevant parts of the learner model following the associations between
elements in the maps for each layer in the learner modelling framework (ap-
pendix A). The algorithm used for belief propagation is a “loopy” variation of
Shenoy-Shafer algorithm for belief-functions propagation (Shenoy and Shafer,
1990) designed for this project.
The algorithm relies on neighbouring beliefs exchanging messages constructed
from their own direct evidence (if any), messages received from other neighbours

6Beta distributions are continuous probability distributions with probability density functions
defined on the finite interval [0, 1], commonly used in Bayesian statistical inference (Wikipedia,
2006).

©LEACTIVEMATH Consortium 2005 Page 53 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0 0.25 0.5 0.75 1

Pr
ob

ab
ilit

y
di

st
rib

ut
io

n

Learner response

Very negative
Negative
Medium
Positive

Very positive

Figure 4.7: Beta distributions used by LM for each value that can be reported by
learners using the Self-Report Tool. The intervals [0, 0.25], [0.25, 0.50], [0.50, 0.75] an
[0.75, 1.0] correspond to the levels I, II, III and IV, respectively.

and (conditional) mass functions in the association between neighbours. In every
iteration, all beliefs that have received updated messages (with adjusted evi-
dence) from its neighbours re-calculate their own and check whether these have
changed significantly (given a predefined threshold and a method for comparing
mass functions). If that is the case, and their messages are not full with ignorance
(not beyond another predefined threshold) then they send them to their neigh-
bours. The iterative process ends when no more messages have been exchanged
or when a predefined maximum number of iterations have been reached.
Threshold are included in the algorithm to cope with the complexity of the calcu-
lations, particularly for the case of larger maps for the dimensions in the learner
modelling framework. All thresholds are configurable using JAVA properties.

4.3.4 Belief updating

At the end of the propagation of evidence, many beliefs in a learner model have
new evidences ascribed to them. These evidences are shaped as pairs of the form
(eventId, mi), where eventId is the identifier given to the event that produced the
evidence and mi is a mass function corresponding either to the (direct) interpre-
tation of the event or to a message received from the neighbouring belief. The
next step is to combine all new evidence into a single mass function me, and this
is done using TBM combination operator ⊕,

me = m1 ⊕m2 ⊕ · · · ⊕mn (4.8)

defined using the combination rule

mi ⊕mj(s) = ∑
a∩b=s

mi(a)×mj(b). (4.9)

©LEACTIVEMATH Consortium 2005 Page 54 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

This combination rule produces an operator that is associative and commutative,
allowing its iterative application as in equation (4.8). It is the combination rule
used all over LM every time mass functions (representing either beliefs or evi-
dences) need to be combined. It is the same rule as in Dempster-Shafer Theory
(DST), except for the fact that m(∅) is never forced to be zero. The mass assigned
to the empty set is interpreted in xLM as the amount of conflict in the evidence.
The final step of the process of updating beliefs consist in combining the mass
function that represents the belief mb with the mass function representing the
new evidence accumulated me. This is done by discounting mb first—making
older evidence weaker—and then combining it with me using the ⊕ operator,

mb ← d×mb ⊕me, (4.10)

where d is is a value in between zero and one.

4.4 Learner History

The learner history needs to store received events, which are JAVA objects, in a
database. The problem of storing such objects in a relational database has already
been subject to much attention, and several solutions that tackle this problem
are freely available—for more information about the object-relational paradigm
mismatch, we refer to an overview article by Ambler (2006). The problem is
harder than it might seem at first glance. What we were looking for was a con-
figurable persistence layer, i.e. a framework that encapsulates the connection to
the persistence engine, which would take care of storing and retrieving events in
a database.
The learner history implementation is based on HIBERNATE, which is a frame-
work for object/relational persistence. HIBERNATE’s query language, HQL, is
independent of the database in use. It is not hard to learn and very similar to
SQL, but avoids dealing with SQL dialect issues. It can be connected to almost
any database and features its own query language. HIBERNATE is completely
transparent regarding the database it is connected to.
To map objects to a database schema, an XML-based configuration is required that
specifies which object to map to which table, and which field has to be mapped
to which column. HIBERNATE will then take care of creating the schema if it does
not yet exist in the database. Figure 2 shows a sample mapping of an event.
HIBERNATE manages the persistent objects by using a session mechanism. Ob-
jects can be persisted within such a session by simply using the session’s save

method. Of course, hibernate has much more features to manipulate the persis-
tence life cycle of objects, but because of the relatively simple structure of the
events, there was only one important decision to take in this respect, namely
what the database schema should look like. This is an important issue in objec-
t/relation mapping. HIBERNATE offers three strategies to deal with subclasses
like our events:

©LEACTIVEMATH Consortium 2005 Page 55 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Listing 2: A sample HIBERNATE XML mapping.

<joined−subclass
name="org.activemath.events.types.PagePresentedEvent"
table="eventPagePresented">

<key column="eventId"/>
<property name="bookId" column="book"/>
<property name="page" column="page"/>

</joined−subclass>

• Table per class, which means that a class is completely mapped to its own
table, even if it shares some fields with the base class..

• Table per class hierarchy, which means that a “big” table is created that
contains all fields of all classes in the hierarchy.

• Table per subclass, which means that a table is created for the base class
and for each subclass.

Each of the three approaches has advantages and drawbacks. We decided to use
the table per subclass strategy because table per class hierarchy generates a single
table that is hard to manage, and table per class generates too much redundant
columns (one for each attribute of the base class). The schema created by the
table per subclass approach is clean and quite flexible. To add a new event, only
a table for the new subclass needs to be created.
An important feature of HIBERNATE is the retrieval of stored objects is by using a
so-called criteria-based approach. The idea behind this approach is to set criteria,
i.e. constraints on attribute values, in order to retrieve matching objects. Thus,
we do not always need to design an SQL or HQL query to fetch events from the
database.
LH query interface uses the query by example approach, it has a method that
takes a partial event instantiation as an argument. This partial instantiation is
then translated into a HIBERNATE criteria-based query, which can readily be used
to retrieve the desired events. HIBERNATE provides the tools to easily perform
the query translation. This method has been built for the typical use case of a
component that needs to know whether the user already performed an action
(e.g. managed to solve some specific exercise).
One more level of detail to query the LH is provided by the object HistoryQuery.
This object can be used to explicitly set the constraints on event attributes, similar
to the partial instantiation of an event. In addition to the attributes available for
partial instantiation, the HistoryQuery includes special constraints on numerical
attributes. This is useful to express criteria such as “events the user has gen-
erated in the last 5 minutes” or “exercises the user solved at least 50 percent”.
HistoryQuery objects are internally translated into a HIBERNATE criteria query.

©LEACTIVEMATH Consortium 2005 Page 56 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

The implementation of the Learner History was made corresponding to the spec-
ifications set up in deliverable D10 (Andrès et al., 2005), Student Model Specifi-
cation. For in-depth information about the learner history, please consult this
document.

©LEACTIVEMATH Consortium 2005 Page 57 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Chapter 5

Outstanding issues

So far this report has described the diagnostic functionality of the Extended
Learner Model, the new learner modelling subsystem for LEACTIVEMATH. xLM
tries to capture the multi-dimensional nature of learners, their ongoing states
and dispositions using a combination of object oriented programming, concept
maps, production rules and approximate reasoning, the latter in the form of be-
lief networks—both probabilistic and based on belief functions, defined on top
of the concept maps that define the modelled learner dimension. The diagnostic
and modelling processes inside xLM have been sketched with details and exam-
ples.
This final chapter aims to discuss outstanding issues concerning obstacles that
have interfered with developing the diagnostic functionalities of xLM, as well
as limitations of the current prototype worthwhile further research and develop-
ment.

Knowledge vs content From the beginning of the project there have been dis-
crepancies regarding the nature of the material developed for the project in OM-

Doc. From one viewpoint, it can be seen close to mathematical knowledge, spe-
cially given OMDoc semantic nature. From another viewpoint, the semantic nature
of OMDoc is enhanced or diminished by the nature of the documents it encodes
and the processing capabilities of the interpreters.
Formal mathematical documents encoded in OMDoc are written with consistency
and completeness in mind. Their purpose is to represent knowledge that can be
verified, proved and otherwise interpreted and used by computers. On the other
hand, educational documents are written pedagogically, their purpose being to
provoke learning experiences, which themselves are not usually represented ex-
plicitly in the document. Educational documents and collections of them can be
rather inconsistent, repetitive and incomplete, even on purpose if that is believed
to improve their pedagogical effect.
The issue gets acute when it comes to decide the shape for the subject domain
map in xLM. One possibility is to use the content available as a map, with con-
tent items (e.g. OMDoc concepts and symbols) being subjects of beliefs. On one
hand, the approach is quick and simple, and it is the one used by ACTIVEMATH
old learner model. Every time a new piece of content is created, a new subject
domain topic for xLM to have beliefs on is created as well. Every author can

©LEACTIVEMATH Consortium 2005 Page 58 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

define topics for xLM to model learners on. On the other hand, it is an approach
prone to inconsistencies, repetitions and incompleteness, very much as content
is. Another possibility is to develop an explicit ontological or conceptual map of
the subject domain, as a more stable framework for xLM to ground beliefs on.
Given the lack of a domain expert embedded in LEACTIVEMATH, able to inter-
pret content and extract knowledge from it, a map of the domain delivers part of
the hidden, implicit content semantic. A map of the domain can help authors to
better describe their content. They can make explicit references to it.
A separate concept map for the subject domain is the implementation of choice
for xLM. It provides a solid ground for learner modelling which is less sensi-
tive to changes in content. However, it has had almost no support elsewhere in
the project. Consequently, the subject domain map is currently implemented as
part of xLM and covers only the minimum of Differential Calculus necessary for
LEACTIVEMATH evaluation.

Misconceptions Until very recently, misconceptions identified and catalogued
by authors had been introduced in content and content metadata only as com-
ments, with no formal representation nor mechanisms for their retrieval. Some
additional work has been done following the last project meeting in Málaga,
Spain, yet misconceptions representation in LEACTIVEMATH is still very primi-
tive, a list of OMDoc symbols with no references to other content items.
This condition have severely affected xLM processing of misconceptions, here
called conceptual and procedural errors (CAPE). The framework is set for their
processing, yet there has been no material to evaluate it properly

Competency, level and difficulty In PISA, competency levels are holistic en-
tities, competency clusters that reflect ‘how mathematical processes are typically
employed when solving problems’ (OECD, 2003, p. 31). Their operationalisation
in xLM reverses the relationship between competency and competency level, the
latter becoming the scale to measure progress in the former. The idea is that,
when considered in conjunction, the collection of competencies and their grades
will produce a holistic competency level. However, this is an idea still to be ex-
plored and evaluated.
In the same vein, competency level and difficulty are interpreted by xLM as two
granularities in the same scale. Very much like metres and centimetres. This
may not do justice to the nature of competency levels, which seems to represent
rather big qualitative stages but, again, is a way of operationalising them for
learner modelling.

Metadata usage A core but minimum subset of the available metadata for con-
tent is actually taken into account while interpreting events, and could be ex-
panded for better. Nonetheless, most metadata of the current LEACTIVEMATH

©LEACTIVEMATH Consortium 2005 Page 59 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

content has been produced based in the subjective appreciation of their authors,
rather than on empirical evaluation of content, and it is suspected that there is
a strong correlation between their different values. In such a case, taken into
account more elements of metadata can be misleading.

Interpretation of events The probability assignment functions and probabil-
ity distributions used by LM (figures 4.6 and 4.7, respectively) are aimed to take
into account the author’s subjectivity in metadata and the uncertainty of inter-
preting learner behaviour. In the current implementation, the same set of func-
tions are used for interpreting all events, independently of the source, which
means they are all given the same credibility. This is the case, for example, for
the learner using the Self-Report Tool and the Situational Model. Since both pro-
duce diagnostic events, the same Beta distributions are used to interpret their
input by LM. OLMMetacog events produced by the Open Learner Model and
ExerciseFinished events are interpreted using the same probability assignment
functions. Each case needs to be refined as experience of xLM use accumulates.

Propagation algorithm A careful analysis of the propagation algorithm is nec-
essary to determine suitable adjustments and the requirements on the maps that
would guarantee it to converge to a good approximation of the correct marginals.
On the same line, there are a few parameters that can be fine tuned to optimise
xLM performance in terms of accuracy, reliability and efficiency. Of particular
interest is the issue of performance with larger maps for the different layers of
the learner modelling framework.

©LEACTIVEMATH Consortium 2005 Page 60 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Bibliography

ADL (2004). Sharable Content Reference Model (SCORM) 2004: Overview. Ad-
vanced Distributed Learning, 2 edn.

Ambler, S. W. (2006). The object-relational impedance mismatch. URL http:

//www.agiledata.org/essays/impedanceMismatch.html.

Andrès, E., P. Brna, N. van Labeke, M. Mavrikis, R. Morales, H. Pain and
K. Porayska-Pomsta (2005). Student model specification. Deliverable D10,
LeActiveMath Consortium.

Brna, P., N. van Labeke and R. Morales (2005). Open student model. Deliverable
D29, LeActiveMath Consortium.

Brown, A. (1987). Metacognition, executive control, self-regulation, and other
more mysterious mechanisms. In F. E. Weinert and R. H. Kluwe, eds., Metacog-
nition, Motivation, and Understanding, pp. 65–116. Lawrence Erlbaum Asso-
ciates.

Brown, P. and S. C. Levinson (1987). Politeness: Some Universals in Language Usage.
No. 4 in Studies in Interactional Sociolinguistics. Cambridge University Press.

Conati, C., A. Gertner and K. VanLehn (2002). Using bayesian networks to man-
age uncertainty in student modeling. User Modeling and User Adapted Interac-
tion, 12(4) 371–417.

Corbett, A. T. and J. R. Anderson (1995). Knowledge tracing: Modeling the ac-
quisition of procedural knowledge. User Modeling and User Adapted Interaction,
4(4) 253–278.

DSL (1999). SMILE: Structural Modeling, Inference, and Learning Engine. Apllication
Programmer’s Manual. University of Pittsburgh.

Fung, R. and B. Del Favero (1994). Backward simulation in Bayesian Networks.
In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pp.
227–234.

Godauze, G. (2005). Structures and metadata model. Deliverable D6, LeActive-
Math Consortium.

Guo, H. and W. Hsu (2003). A survey of algorithms for real-time Bayesian Net-
work inference. URL citeseer.nj.nec.com/552206.html.

©LEACTIVEMATH Consortium 2005 Page 61 of 66

http://www.agiledata.org/essays/impedanceMismatch.html
http://www.agiledata.org/essays/impedanceMismatch.html
citeseer.nj.nec.com/552206.html

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Heckermann, D. (1996). A tutorial on learning with Bayesian Networks. Tech.
rep., Microsoft Research.

Henrion, M. (1988). Propagating uncertainty in Bayesian Networks by proba-
bilistic logic sampling. Uncertainty in Artificial Intelligence, (2) 149–163.

IEEE (2002). Draft standard for learning object metadata. Tech. Rep. IEEE
1484.12.1-2002, IEEE.

Jameson, A. (1996). Numerical uncertainty management in user and student
modeling: An overview of systems and issues. User Modeling and User Adapted
Interaction, 5(3–4) 193–251.

Jensen, F. V. (1996). An Introduction to Bayesian Networks. Springer Verlag, New
York.

Lauritzen, S. L. and D. J. Spiegelhalter (1988). Local computations with probabil-
ities on graphical structures and their applications to expert systems. Journal
of the Royal Statistical Society, 50(2).

LeActiveMath (2004). LeActiveMath contract – annex i: Description of work.

Libbretch, P., E. Andrès, O. Lemon, R. Morales, K. Porayska-Pomsta, S. Win-
terstein, C. Ullrich and C. Zinn (2005). Open architecture. Deliverable D8,
LeActiveMath Consortium.

OECD (2003). The PISA 2003 Assessment Framework. Organisation for Economic
Co-Operation and Development.

Ortony, A., G. Clore and A. Collins (1988). The Cognitive Structure of Emotions.
Cambridge University Press, Cambridge.

Polson, M. C. and J. J. Richardson, eds. (1988). Foundations of Intelligent Tutoring
Systems. Lawrence Erlbaum Associates, New Jersey.

Sentz, K. and S. Ferson (2002). Combination of evidence in dempster-shafer the-
ory. Sandia Report SAND2002-0835, Sandia National Laboratories.

Shachter, R. D. and M. A. Peot (1990). Simulation approaches to general prob-
abilistic inference on belief networks. Uncertainty in Artificial Intelligence, (5)
221–231.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press.

Shenoy, P. P. and G. Shafer (1990). Axioms for probability in belief-function prop-
agation. In R. D. Shachter, T. S. Levitt, L. N. Kanal and J. F. Lemmer, eds., Pro-
ceedings of the Fourth Anual Conference on Uncertainty in Artificial Intelligence, pp.
169–198. North-Holland.

©LEACTIVEMATH Consortium 2005 Page 62 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Smets, P. and R. Kennes (1994). The transferable belief model. Artificial Intelli-
gence, 66(2) 191–234.

Stillings, N. A., S. E. Weisler, C. H. Chase, M. H. Feinstein, J. L. Garfield and E. L.
Rissland (1995). Cognitive Science: An Introduction. MIT Press, 2 edn.

Wikipedia (2006). Beta distribution — wikipedia, the free encyclopedia. URL
http://en.wikipedia.org/w/index.php?title=Beta_distribution&oldid=

35219983. Accessed on 26 January 2006.

Zapata-Rivera, J.-D. and J. E. Greer (2000). Inspecting and visualizing distributed
bayesian student models. In G. Gauthier, C. Frasson and K. VanLehn, eds.,
Intelligent Tutoring Systems: Fifth International Conference, ITS’2000, 1839, pp.
544–553. Springer-Verlag.

©LEACTIVEMATH Consortium 2005 Page 63 of 66

http://en.wikipedia.org/w/index.php?title=Beta_distribution&oldid=35219983
http://en.wikipedia.org/w/index.php?title=Beta_distribution&oldid=35219983

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Appendices

©LEACTIVEMATH Consortium 2005 Page 64 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

Appendix A

Learner Model Maps

©LEACTIVEMATH Consortium 2005 Page 65 of 66

Deliverable D30
Diagnostic Functionalities

LEACTIVEMATH (IST-507826)

©LEACTIVEMATH Consortium 2005 Page 66 of 66

	Executive summary
	Introduction
	Principles
	Introduction
	The Situational Model
	Data analysis methodology
	Results of the analysis

	Learner Model
	Learner History

	Functionality
	Diagnosis
	Information interchange
	Application program interface
	Situation Model
	Learner Model
	Learner History

	Implementation
	Introduction
	Situational Model
	Design decisions
	Implementation
	The flow of information within the Situational Model

	Learner Model
	Levels and beliefs
	Evidence
	Propagation of evidence
	Belief updating

	Learner History

	Outstanding issues
	Bibliography
	Learner Model Maps

