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Executive summary

This document provides a specification of the Student Model as required by the workplan for
LEACTIVEMATH. The specification relates Work Package 4 Student Model (WP4) to the other LE-
ACTIVEMATH components and describes its subcomponents. The Work Package main deliver-
able, the student modelling subsystem of LEACTIVEMATH, is renamed as the “Extended Learner
Model” subsystem (xLM) and is composed of four subcomponents named Learner Model (LM),
Learner History (LH), Situation Model (SM) and Open Learner Model (OLM).

This specification conforms to the requirements generated by the project, as in Deliverable D5 (Le-
ActiveMath Partners, 2004c). For the benefit of the reader, all requirements referenced in this
document can be found in Appendix C. The project used a Claims Analytic approach to generat-
ing Deliverable D5 Requirements, and the WP4 team is continuing to work in this way. Several
new claims for the Extended Learner Model are included in this specification in order to support
design and implementation. This claims generation process will continue and will be extended
along low-level design and implementation of the subsystem.

In addition to addressing the issue of conformance of the specification with the requirements, this
specification provides a view of the research background, the challenges to learner modelling in
LEACTIVEMATH and the methodology employed to design the Extended Learner Model, as well
as descriptions of the functionality and architecture for xLM and its various subcomponents.

The work of WP4 is a combined effort by researchers from the University of Glasgow (formerly
from Northumbria University), the University of Edinburgh and the University of Saarland. This
document is constructed out of sub-teams working across the boundaries between these three
Universities. Here are the (approximate) sub-teams for the five core sections of work reported in
this document though all have contributed to most, if not all, aspects of the work.

xLM architecture Rafael Morales, Eric Andrés, Nicolas Van Labeke
LH Eric Andrés, Nicolas Van Labeke, Kaska Porayska-Pomsta
LM Rafael Morales, Nicolas Van Labeke, Paul Brna
SM Kaśka Porayska-Pomsta, Helen Pain, Manolis Mavrikis
OLM Nicolas Van Labeke, Paul Brna, Rafael Morales

Following the recommendations from the reviewers of the first delivery of this document, the
specification of the Learner Model component has been thoroughly rewritten in order to give a
complete and detailed description of its internal representation and updating process (sections
2.4 and 4.4). In particular, details are provided of the sources of evidence used to collect in-
formation about the learner characteristics represented in the Learner Model (sections 4.4.2.1 to
4.4.2.5), as well as details of how the Learner Model will be updated from the evidence gath-
ered and stored in the Learner History (in section 4.4.4). A revised API for the Extended Learner
Model that takes into account this improved level of description is given in Appendix B.

Also following the recommendations from the reviewers, section 3 gives an overview of the var-
ious learning scenarios currently specified by WP6 and how they will be taken into account by
the Extended Learner Model.

©LEACTIVEMATH Consortium 2005 Page 7 of 133
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Chapter 1

Introduction

The development of an effective student model for LeActiveMath is a key factor for the success
of the project: if the student model works effectively, it will provide significant opportunities
for the various components of LEACTIVEMATH to deliver valuable interactive experiences for
learners. While the Student Model component provides valuable services to the Tutorial Com-
ponent (among others), it also provides opportunities for highly dynamic interactions between
the learner and the Open Learner Model. These interactions offer potential value that previous
covert student modelling systems have not been able to provide. Hence the student model has
both significant scientific potential as well as provides the necessary functionality to enable all
the components of LEACTIVEMATH to work together effectively.

Some terminological decisions have been made within Work Package 4. The most important one
is to avoid the use of the word “student” and replace this with “learner” because, as a more
general term, the latter refers to a wider range of possible LEACTIVEMATH users. Hence, in the
remainder of this document, the reader will find terms like “Learner Model” and “Open Learner
Model” rather than Student Model and Open Student Model. (The title of the deliverable, how-
ever, has remained as originally given.)

Another important term introduced here is the “Extended Learner Model”—xLM, for short. One
reason for introducing this term is that the project proposal mentions two different kinds of
learner model—termed, in the original proposal, as the Learner Model1 (LM) and the Situation
Model (SM). The extended Learner Model is intended to include both these models as well as the
Open Learner Model (OLM) and the Learner History (LH), a repository of the events that have
occurred and that relate to the learner’s activity and the inferences made by the system. Hence
the xLM can be seen as the primary concern of Work Package 4.

As stated in the Project Annex, Open Learner Modelling is taken here to mean a scrutable, in-
spectable, and modifiable learner models. This definition is closer to Dimitrova’s notion of an
interactive open learner model (Dimitrova et al., 2001), and this emphasises that one of the main
research interests within Work Package 4 is the design of the interactions that take place through
the Open Learner Model’s user interface. This means, first of all, that the design of a Learner
Model must supports such interactions and benefit from them. Previous research has shown that
there are may ways of taking into account evidence gathered through open learner modelling,
and of combining it with evidence gathered by more traditional diagnosis mechanisms. It has
also shown there are many important practical, theoretical, social and ethical issues to consider.
This means that open learner modelling, rather than simplifying the learner modelling process,
makes it more complex. This is the reason why the issues around the design of the modelling
components of the Extended Learner Model make the core of this specification.

The overarching design principle within Work Package 4 is user-centred design (Norman and
Draper, 1986) and it is influenced by an informant-oriented perspective (Scaife et al., 1997). De-
sign decisions that need to be made for this deliverable are therefore subject to later evidence/in-
formation that may change such decisions—i.e. a form of iterative design. From an engineering

1Actually, Student Model
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and project management perspective, the risks associated with such changes are estimated care-
fully and decisions made that are consistent with the completion of the project on time.

The Extended Learner Model is a complex intelligent subsystem of LEACTIVEMATH. So, in order
to make its description clear, we have organised it following a classical approach for describing
intelligent systems that entails three levels of description: knowledge, logic and implementation
(Russell and Norvig, 1995). This means that xLM is described first, at the knowledge level, in
terms of what it knows to support its behaviour as an intelligent agent. Then, at the logical
level, a detailed, more formal and complete description is given of xLM functionality, internal
structure and content. Finally, implementation details are provided when judged as supportive
of clarity. Since this document is a specification, not a description of a particular implementation,
its completeness is not affected by the omision of details that have no impact on the functionality
of xLM at the knowledge and logical levels of description.

To explain—as much as possible—the rationale behind the design and implementation decisions
that have been taken so far in Work Package 4 has been yet another important organisation prin-
ciple for this deliverable.

The core of the document is organised in four main chapters. Chapter 2 provides the grounds
for the specification, starting with a brief review of the research background that is followed
by a discussion of the particular challenges posed to (open) learner modelling by the nature
of LEACTIVEMATH. The second part of this chapter is devoted to describe the methodology
followed to produce the design of the Extended Learner Model subsystem, which is elaborated
on in the final part of the chapter.

Chapter 3 describes the impact LEACTIVEMATH learning scenarios have on the design and op-
eration of the Extended Learner Model, as well as the support given by xLM to this learning
scenarios.

Chapter 4 contains a detailed description of xLM functionality as a learner modelling server
within LEACTIVEMATH, its internal structure and content, as well as details of functionality,
structure and content of each one of the four xLM components: Learner History (LH), Learner
Model (LM), Situation Model (SM) and Open Learner Model (OLM).

The conformance of xLM specification to LEACTIVEMATH requirements, as described in deliver-
able D5 (LeActiveMath Partners, 2004c), is explained in Chapter 5. This is followed by a list of the
conceptual and procedural errors (CAPEs) identified so far in LEACTIVEMATH, in Appendix A,
a description of xLM API in Appendix B and the list of requirements from deliverable D5 that
apply to xLM.

©LEACTIVEMATH Consortium 2005 Page 9 of 133
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Chapter 2

Design of the Extended Learner Model (xLM)

2.1 Research background

The history of the use computers in training and education started soon after the introduction
of the first commercial computers. In time, research and development in this area split into two
main currents, commonly referred to as Computer Based Training (CBT) and Intelligent Tutoring
Systems (ITS). A central tenet in CBT development has been that information and communica-
tion technologies (ICT) are useful tools in improving people’s access to learning resources and
enhancing their teaching and learning experiences. Consequently, CBT practitioners have been
mostly concerned with developing new tools using ever evolving ICT and applying them to
training and education.

In contrast, ITS development has been led less by ICT evolution than by research in the so called
cognitive sciences—artificial intelligence, cognitive psychology, neurosciences and philosophy
of mind, among others. The focus of interest for ITS practitioners have mostly been enhancing
the learning experience by making computers as flexible and supportive as human tutors can
be, on the grounds of cognitive science theories and techniques. ITS systems have been proudly
described as systems that ‘care, precisely’ (Self, 1999).

Learner models, understood as internal representations of learners held by ITS systems, have
been at the core of ITS from the beginning, and are considered by many as the distinctive trait of
ITS. They give ITS systems the flexibility and discernment needed to treat learners as individu-
als. On the other hand, learner modelling is a very difficult task (Self, 1990) that has been a major
research topic, not only for ITS but also for artificial intelligence, since the mid 1970’s. The diffi-
culty of the problem has brought many approaches to solving it, from grounding learner models
in cognitive theories of learning (Anderson et al., 1995) to the use of powerful machine learning
and knowledge representation techniques for diagnosing learners’ states and characteristics and
representing them by computers (Sison and Shimura, 1998; Aziz et al., 1995); from covert learner
modelling, ideally unnoticed by the learner, to overt learning modelling that opens the doors to
learners’ active participation in the modelling process (e.g. via self-reports) and includes facili-
ties for negotiating or direct manipulation of the content of their learner models (Dimitrova et al.,
2001).

2.1.1 Open learner modelling

In principle, learners can be very helpful in solving the problem of learner modelling (Self, 1990).
Some studies have indeed shown that able learners could learn from accessing their own knowl-
edge (Bull and Pain, 1995; Aleven and Koedinger, 2000; Mitrovic, 2001). This has been one im-
portant reason to pursue this area of research that, in contrast to the traditional approach of
regarding the learner as an object to be diagnosed as surreptitiously as possible, encourages the
active and explicit involvement of the learner in the modelling process. However, many issues
still remain to be investigated; for example, how to represent the evolving set of the learner’s
beliefs about their own state of knowledge (Self, 1994a,b); how to give psychological credibility
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to learner models (Anderson et al., 1995); how to design systems capable of maintaining learner
models in collaborative interactions with learners (Dimitrova et al., 1999a,b), and how to convey
a convincing image of the system as a collaborator (du Boulay et al., 1999; Dillenbourg and Self,
1992; Hietala and Niemirepo, 1997).

Open learner modelling provides learners with additional learning experiences and equips the
system with another channel to interact with them. This is important because it increases the
benefits of designing, implementing and running a (costly) learner-modelling strategy. From
this viewpoint, a learner model acquires new purposes, beyond the conventional ones of adapt-
ing the system to the particular needs of the learner, predicting her behaviour and assessing
her knowledge. Self (1990) praises open models for their potential to support, provoke, and
even challenge learners to reflect on their own understanding, helping them to ‘develop a more
favourable self-image and a better view of how knowledge is acquired’ (see also Dillenbourg,
1992). Furthermore, designing learner models to be inspectable by learners could be, in Self’s
words, a ‘salutary principle’ that ‘might benefit ITS design by reducing the temptation to include
crude, ad-hoc classifications’ in the models.

2.1.1.1 External influences

The shift from covert to open learner modelling parallels the change of focus from tutoring sys-
tems to learning environments. Whereas ITS systems care for each learner’s individuality, most
of them embody direct instruction of a predefined and well structured curriculum. Intelligent
Learning Environments (ILE), on the other hand, generally incorporate a learner-centred philos-
ophy that conceives learning to be constructing knowledge from personal learning experiences
gathered through independent exploration of the subject matter (Hannafin and Land, 1997). En-
dowing learners with the ability to take control of their learning experiences makes it harder to
maintain a learner model almost exclusively from information gathered in a furtive manner—
for example, the system cannot choose the next exercise in order to discern between competing
explanations of learner behaviour.

Learners have to be able to deal with their new responsibility as directors of their own learning
process; otherwise they will get lost in the middle of rich and flexible learning environments, not
knowing which path to explore nor which question to ask, unable to learn anything from either
success or failure (e.g. Aleven and Koedinger, 2000). An approach to this problem is represented
by the emphasis that some modern educational theories place on meta-cognition (Weinert and
Kluwe, 1987), which is about acquiring knowledge about ourselves (and other cognitive crea-
tures), processing this “meta-knowledge”, and using it for directing, monitoring and evaluating
our problem-solving activities. In essence, the idea is that learners should be able to exert con-
trol over their knowledge acquisition and problem-solving, and hence increase the efficiency and
quality of their learning, by improving their meta-cognitive abilities (Joyce et al., 1997). Open
learner modelling fits better in this view of education than covert learner modelling because it
gives learners an opportunity to rehearse and improve their self-knowledge.

2.1.1.2 Objectives

Since the publication of Self’s paper (1990), many other researchers have also been driven by
the belief that open learner modelling encourages learners to reflect on and become more aware
of their own knowledge, learning and problem-solving (Kay, 1997; Paiva et al., 1995; Bull et al.,
1995). Naturally, open learner modelling has been seen also as a way of constructing better
models—an interpretation of Self’s recommendation of directly asking learners for information
instead of struggling to guess it. The idea has also been explored by many authors (Beck et al.,
1997; Kay, 1994b; Bull and Shurville, 1999).
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A further source of motivation for open learner modelling has been to decrease the cost to benefit
ratio of learner modelling by devising further ways of exploiting learner models. Open models
have been either used or proposed as tools for communication between learners and the system,
between learners and teachers (Brna et al., 1999; Bull, 1997; Pain et al., 1996) and among learners
(Ayala and Yano, 1996).

2.1.1.3 Research issues

Learner modelling can be a very complex process and produce quite elaborate representations
of learners. Consequently, it opens several opportunities for the active and explicit involvement
of learners. More importantly perhaps, it raises a number of interesting questions such as which
of these opportunities are worth taking; to what extent learners can, should or even must be
allowed to participate in the modelling process; and the implications of opening a particular
aspect of learning modelling for the process as a whole and for the design of other components
of ITS systems.

Taking part in the modelling process requires time and attention from learners. Every time they
are asked a question about themselves—like, for example, how well they think they understand
the concept of limit, in differential calculus—or browse the learner model, they have to stop per-
forming other activities they may regard as more important to their learning. In time, they can
become quite frustrated (Beck et al., 1997), irritated or distracted, unless the timing of interrup-
tions, the selection of questions and feedback and the user interface are carefully designed to
avoid that.

Learner models can contain information that may be very difficult to present in a clear form,
may overload or confuse learners, or may even be too sensitive for learners to know about (e.g.
how much the system trusts the learner’s level of confidence in her knowledge; Beck et al., 1997).
Non-symbolic, mixed learner models or highly complex symbolic ones may pose serious diffi-
culties for visualisation (cf. Zapata-Rivera and Greer, 2000), while presenting in full detail the
evidence that supports inferences based on machine-learning techniques may be unnecessary or
undesirable. Stereotypes can be quite useful and effective (Kay, 1994a), but may be interpreted
in a pejorative sense by some learners.

Self (1990) and Kay (1997) have suggested that considering learner participation in the modelling
process is a beneficial principle of design, even if not fully implemented. Moreover, current and
future regulations may demand each bit of personal information stored in the learner model be
accessible to learner’s scrutiny under request, and may also give learners rights to put limits
on the availability of that same information to other interested parties, both inside and outside
system that keeps it (Vassileva et al., 1999).

A caveat against giving learners voice in the learner modelling process comes from the well-
known attack on introspection in the early part of the past century, as described in (Ericsson
and Simon, 1984), and from more recent studies on the quality and quantity of learners’ level
of self-knowledge (Barnard and Sandberg, 1996): learners’ self-knowledge can be very little and
inconsistent with their performance—e.g. they may think they know how to do something but,
at the same time, being unable to do it and to articulate their knowledge—but they also may not
be interested in improving it or may find the task too hard. Furthermore, even if some learners
do have a good deal of accurate self-knowledge, they may express it using a different set of
conventions—‘How can we be sure that the introspecting observer uses language in the same
way as the interpreting experimenter?’ (Ericsson and Simon’s phrasing of Watson’s (1913) attack
on analytic classical introspection, ibid., p. 58). Other researchers have suggested that blindly
empowering learners to take control of their learning may be detrimental because they may lack
the necessary (meta) knowledge to make proper use of this power (Aleven and Koedinger, 2000).

A viable way of getting around the lack of learners’ self-knowledge follows from Ericsson and
Simon’s insight that useful and well-supported information can be obtained from verbal reports
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without having to trust the speaker. For example, the learner may be mistaken when she affirms
that she knows how to do something—e.g. how to carry out symbolic differentiation—but her
affirmation implies that she is at least aware of the existence of such a piece of knowledge—i.e.
symbolic differentiation. This approach gets safer at the expense of reducing learners’ power
to make decisions on the modelling process, and can be accused of being disguised diagnosis
rather than proper open learner modelling, and may have a detrimental effect on the motivation
of learners to participate in the modelling process. The opposite approach, that of fully trusting
learners, goes more on the lines of giving learners more control and responsibility by presenting
the system as a peer collaborator but, in these conditions, a learner model cannot be interpreted
anymore as a more or less reliable image of the learner, but rather as an image the learner believes
is faithful, or even as the image the learner wants to present to the system. Whether this sort
of “learner model” can still be a source of information about the learner, and how a learning
environment can make use of it, are open questions (cf. Vassileva et al., 1999). The idea departs
radically from the standard aim behind a learner model: that of being a faithful representation of
the learner useful for adapting the environment to better support her learning. Other uses of the
learner models, as outlined before, still seem to assume there is a certain degree of reliability in
the models. Whereas it could be the case for a completely deceived tutor to still provide adequate
support to their tutees, it is hard to believe that this would happen frequently. Alternatively, a
very clever tutor could “meta-reason” about the model—e.g. ‘she wants me to believe that she
knows it,’ or ‘she might believe that I believe that she knows it’—and act accordingly1. Some
variations of this sort of reasoning have been proposed for learner modelling (Dimitrova, 2002;
Self, 1994b).

Better solutions should distribute trust, control and responsibility among the learner, the system,
and any other participants in the modelling enterprise. Mechanisms for reaching agreement and
conflict resolution among the parties should exist, from recording all opinions and executing
predefined conflict-resolution procedures, to allowing for full-fledged negotiation to take place.
The UM toolkit (Kay, 1994b), for example, implements the first strategy, whilst MRCOLLINS (Bull
et al., 1995) combines recording of all opinions with support for challenge and negotiation. The
more recent work by Dimitrova (2002) on STYLE-OLM is an attempt to build a learner modelling
component able to collaborate with the learner through dialogues similar in structure to human-
human dialogues. STYLE-OLM keeps the beliefs of learner and system separate, and uses formal
reasoning to infer shared and conflicting beliefs.

2.1.2 Situation modelling

Situation modelling is an essential part of the system’s ability to adapt to the individual learners’
requirements because it places them in a specific context of an interaction. Context provides a
basis for making meaningful decisions as to the way in which to communicate the content to the
learner in a manner that suits their cognitive, emotional and motivational needs best. For human
tutors, the ability to extract the pertinent information from the context in order to adapt to the
learner’s needs is necessarily part of their social as well as pedagogical competence.

The notion of situation modelling is well grounded in the existing research especially in the area
of social linguistics. The theory of linguistic politeness, in particular Brown and Levinson’s ap-
proach (Brown and Levinson, 1987), provides a formal account of the way in which situational
context and the speaker’s model of the hearer in the specific context may be used to choose from
amongst a number of possible strategies (and the specific instances of those), in order to com-
municate with the hearer most successfully. Successful communication is defined in terms of the
achievement of the speaker’s communicative goals and in terms of the persisting willingness of
the hearer to cooperate with the speaker. Whilst the willingness of people to cooperate with one

1That is how The Man in Black defeated Vizzini the Sicilian in The Princess Bride (Reiner, 1987)
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another constitutes the backbone of successful communication, a selection of possible commu-
nicative strategies through which one may want to achieve their goals provides the means for
maintaining such cooperation. Essentially, the communicative strategies are conventions which
define the boundaries between polite, i.e. socially acceptable, and impolite, i.e. socially unac-
ceptable behaviour. Central to the ability to choose the appropriate strategy and the appropriate
action within it, are the notions of face and facework. Face is a socio-psychological artefact which
refers to a person’s need for freedom from imposition by others (autonomy) and their need for
being liked and/or approved of by others (approval). Facework is the speaker’s ability to recog-
nise the hearer’s face needs and to act upon such recognition in an optimal way.

Brown and Levinson’s approach forms the basis for a number of recent computer applications
in natural language generation e.g. (Walker et al., 1997), (Cassell and Bickmore, 2002) and in the
context of tutoring (Johnson and Rizzo, 2004). However, given that in the Brown and Levison’s
model different face requirements and people’s attempt to accommodate them are linked directly
to people’s linguistic actions, their definitions of autonomy and approval are given only in the
context of language use – specifically in the context of choosing the appropriate linguistic form.
Similarly the situational context which plays an essential role in determining the possible levels
of autonomy and approval is characterised in their model in terms of general dimensions of
social distance and power relations. Although on a general level these social dimensions are
applicable to the educational context, they are too opaque to serve as a meaningful basis for
tutorial feedback choices at a specific level, where details about the changes in learners’ affective,
motivational as well as cognitive states are of crucial relevance.

In contrast to this general, language and domain-of-interaction independent approach, Porayska-
Pomsta (Porayska-Pomsta, 2003) argues that in order to operationalise Brown and Levinson’s
model in educational context both the definitions of autonomy and approval and of situational
context need to be adapted to the requirements of the educational domain of interaction. She
defines autonomy directly as the dimension of learner’s face which refers to their need to be
allowed the freedom of initiative to discover knowledge by themselves, with the general rule of
thumb being that the less information the tutor gives to the learner regarding a desired answer
the more freedom of initiative (or autonomy) she is giving to the learner. On the other hand,
approval is defined as a learner’s need to have his motivation and emotional balance maintained
explicitly by the tutor which may be achieved in her model either by explicit praises such as “Well
done!”, or implicit expression of approval by the tutor such as the use of an indirect form to tell
the learner that he made a mistake, e.g. “Are you sure about it [i.e. your answer]?”.

Given Porayska-Pomsta’s definitions of autonomy and approval the situational context is defined
in her model as a combination of factors which impact on the two dimensions of face. Based
on the existing educational literature, real tutorial dialogues and empirical studies with human
tutors, she established a set of eight situational factors relevant to tutors feedback decisions.
She also built a situation model which combines the eight situational factors in order to calculate
autonomy and approval for every combination of possible situational factor values. In this model
the situational factor values are only binary, for example the situational factor learner’s confidence
can take either the value confident or not confident.

The situation model developed as part of the xLM in the context of LEACTIVEMATH builds on
the theoretical and computational framework set up by Porayska-Pomsta. Her model provides a
feasible theoretical as well as computational methodology for designing a situation model capa-
ble of furnishing LEACTIVEMATH with a number of learner-adaptive powers such as the ability
to recommend to other LEACTIVEMATH components how to formulate their feedback or instruc-
tions in a way which suits best the individual learners in specific situations. However, in order
to adapt the original situation model to the requirements of LEACTIVEMATH, a number of is-
sues need to be resolved. First, a set of situational factors and their possible values relevant in
the domain of mathematics needs to be established in order to enable the situation model to
make appropriate calculations of autonomy and approval. Second, the manner in which the rele-
vant situational factors combine with one another and how they impact autonomy and approval
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needs to be determined for the domain tackled in LEACTIVEMATH. Crucially, in order to for
the situation model and for other componets of the xLM to be able to provide LEACTIVEMATH
with learner adaptive capabilities, a mechanism for diagnosing situations in terms of the relevant
situational factor values is needed. In section 2.3 we present the design methodology employed
in this context. Specifically we discuss the empirical studies of which one of the goals was to de-
termine the relevant factors, the relations between them and the sources of evidence that human
tutors rely on in order to diagnose them.

2.2 Challenges for learner modelling in L EACTIVEMATH

The profound differences between CBT and ITS systems, sketched at the beginning of section 2.1,
have been for many years a constant in the use of computers in education. While CBT systems
are nowadays widespread in many shapes and flavours produced by all sorts of makers, ITS
systems have mostly stayed in their designers’ laboratories. While CBT systems can be and
have been developed with relative facility and low cost, the development of ITS systems aimed
at public usage have always been a costly and complex task. While ITS systems have cared
for the particular needs of individual learners and have flexibly adapted to them, CBT systems
have been criticised as unflexible tools for lumping together all learners under the same learning
scheme.

Growing awareness of the advantages and disadvantages of both approaches have lead to at-
tempts to taking the best from each one and merge them into an single approach. One of such
attempts is the current trend towards sharable, reusable and web-abled learning objects (Wiley,
2001; IEEE, 2002). In particular, LEACTIVEMATH fits the description given by the Advanced
Distributed Learning Initiative (ADL, 2004) of second-generation e-learning systems that com-
bine a modern content-based approach—web based, reusable and sharable learning objects, book
metaphor, encoding standards, etc.—from CBT with adaptive learning strategies from ITS.

This mixture of approaches produces tensions in the design of LEACTIVEMATH in general, but
particularly in the design of the Extended Learner Model since this subsystem is to support a
wide range of adaptive learning strategies, from coarse-grain book construction to fine-grain
adaptive assessment and dialogue in natural language, with a common lack of the support tradi-
tionally afforded in ITS systems: tailor designed and dynamically constructed learning activities
that provide large amounts of detailed information about learner behaviour. A learner model in
this conditions has to deliver “more with less”; that is to say, it has to be able to

• answer questions about the learner on the basis of scarce information
• without pursuing blind over-generalision.

The scarcity of information about the learner can be alleviated by interactive diagnosis as part of
open learner modelling.

Among the various open learner models that have built in the past years, some fall into the
category of Editable Learner Model, meaning that learners are enabled to directly alter they own
model if they believe it to be wrong. In another word, the learners’ own statements of what they
believe the learner model should believe about them are simply replacing the learner model’s
own statements of what it believes they should know about themselves .

If such an approach has interesting properties, it nevertheless raises questions about the trust that
is so put into the learner’s sole hands. The approach we are following in designing the learner
model for LEACTIVEMATH is rather to consider that neither the system diagnoses nor the learner
own admissions are superior to the other but are both worth of consideration into building an
accurate portrait of the learner.

Let’s have an example to illustrate this point. The learner, having just solved a difficult exercise
about the chain, decides to report his/her feeling about this situation, using the self-report tool
(i.e. admissions are made on a voluntary basis rather than on request):
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"I’m quite proud of having solved that problem" (Evidence 1)

Later on in the session with LEACTIVEMATH, the learner starts questioning the Open Learner
Model about what it believes:

"What do you think of me?"

"I think you are quite proud of your achievements"

"Why do you think so?"

"Because you told me so"

"Sorry, but I don’t think I am that proud" (Evidence 2)

What is the difference between (1) and (2)? Both are dealing with the same learner’s affective
state; both can be seen as self-reflecting activities (after all, if you have to report about yourself,
you better have to think about yourself). But both admissions took place in different spatial and
temporal context, i.e. both admissions are coming from different sources that cannot be regarded
as equivalent.

The latter statement from the learner is in no way contradicting the former, in the sense that there
is no ground to justify why it should just replace it. What it does is completing the portrait the
OLM already had about the learner’s state. The self-report tool and the interactive dialogue that
the OLM provides are two different sources of evidence. Both are providing the learner model
with streams of evidence about affective state that have to be accumulated and combined in order
to build an accurate model of the learner.

And so this point raises one of the main challenges of a learner model in LEACTIVEMATH, which
is how to combine evidence coming from various sources - potentially contradicting each others,
as illustrated in this example - and with a limited reliability.

2.3 Design methodology

In general the methodology adopted with respect to the design of xLM is iterative and cyclic in
nature. Essentially this means that the design decisions are made in stages and are evaluated in
and adjusted to the ever developing context of LEACTIVEMATH and are based on the data which
is also becoming available in a cumulative and cyclic manner.

In order to inform the design of the xLM with respect to the ditribution of responsibilities be-
tween its subcomponents and in terms of the specific processes that these responsibilities may
consist of, we designed and ran empirical studies in which human tutors and students interacted
with each other in an environment approximating that of LEACTIVEMATH. The aim of the stud-
ies is two-fold. First the studies are used to collect natural language dialogues for the purpose of
informing the design of the Dialogue Manager as described in the deliverable D112. Second, the
studies are designed to provide us with relevant information as to the affective, motivational and
cognitive factors that impact tutors’ decisions and students’ learning. More specifically, as part
of our continuing data analysis conducted in relation to the design of xLM we wish to identify:

• Situational factors that influence tutors’ feedback decisions. This is needed to establish
which factors actually matter and may be explicitly and consistently identified as such by
the tutors when they engage in a dialogue with their students in the domain of mathemat-
ics. The feature which ensures the relevance of the data gathered through our studies is
the channel of communication which is restricted in a way that mimics the environment of
interaction available in LEACTIVEMATH. While numerous factors to do with students cog-
nitive, affective and emotive states have been proposed by researchers in other domains 3,

2Note that because we are responsible for gathering data relevant to both the Dialogue Manager and the xLM, the
description of the study presented here may overalp with the one in the D11

3These also include the eight factors proposed by Porayska-Pomsta.

©LEACTIVEMATH Consortium 2005 Page 16 of 133



Deliverable D10
Student Model Specification

LEACTIVEMATH (IST-507826)

it is not clear which of those actually apply in the domain of mathematics and are detectable
in the context of typed interactions. Eventually, situational factors will be needed also for
establishing the correspondences between an immediate situation and the best possible tu-
torial feedback that may be produced in that situation.

• Types of cues (evidence) that tutors may rely on in diagnosing different situations in
terms of the situational factors. In order for the xLM to be able to model the affective,
motivational and cognitive states of the student and, in the case of the Situation Model, to
make recommendations of the levels of autonomy and approval needed to be expressed
through a given feedback, the xLM needs to be furnished with knowledge about the possi-
ble sources of evidence for diagnosing the relevant states. The xLM also needs to be furnished
with an ability to use this knowledge appropriately. We are using the empirical study to
find out what cues in student’s behaviour do the human tutors use in order to make their
diagnosis of specific factors.

The data collection environment was set up with the above goals in mind.

2.3.1 The Study Design

The study was conducted in three stages:

• stage-1 at which the main design decisions were made and the pilot data collection environ-
ment was developed and tested,

• stage-2 during which the main conclusions drawn from the the pilot study were applied

• stage-3 where the conclusions from the observations and of the analysis of the data gathered
during stage-1 and stage-2 were used to make further changes to the study design.

At stage-3 the changes were made specifically in order to inform the responsibilities between
the subcomponents of the xLM, the distribution of which became much clearer after stage-2.
Although we are not as yet in a position to comment on the exact results of the data gathered
at stage-3, we discuss why the design changes were required based on the analysis of the data
collected at stage-1 and stage-2.

2.3.2 Participants

In total 5 experienced tutors tutored in these studies: 4 tutors from The University of Edinburgh,
School of Mathematics and 1 school teacher from one of Edinburgh’s high schools. 2 in the Uni-
versity tutors participated in all 3 stages, 1 in stage-2 and stage-3, and 1 in stage-2 only. The high
school teacher participated in stage-3 only. Between them the tutors engaged in a tutorial inter-
action with 32 students: 7 students participated in the pilot (stage-1), 7 in stage-2 and 14 students
took part in stage-3. All students were from the University of Edinburgh, taking first year level
undergraduate Mathematics service courses designed to provide support for their main degree
subject: none were intending to continue into Mathematics degree courses. Whilst at stage-1 and
stage-3 each student took part in one interaction only, at stage-2 most students took part more
than once: 5 students participated in 2 sessions and 2 students participated in 1 session only.
Of the students who took part in only one session, one was an excellent student who had no
problems with the material taught and therefore was not recommended by the tutor for another
session, while the other student simply did not turn up for the second session.
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2.3.3 Materials

A number of computer tools were used in the study, some purpose built. The main tool was a
chat interface, based on the Wallis system (developed within the University of Edinburgh Mathe-
matics department), which permitted the student and tutor to interact. Any background material
required by the student (see theory frame below) was also provided by the Wallis system. Addi-
tional functionality was added to enable video capture and replay. The situation factors selection
tool was purpose built for this study.

For all stages of the study, the materials need to be described in terms of the functionality of the
interface given to the students and the functionality of the interface given to the tutors, because
the two interfaces differ in a number of respects. Figure 2.1 shows the student’s side of the data
collection environment which was split into:

• the theory frame (marked Chat rule - Introduction)in which the students could refer to the
basic explanations of the material if they were directed to do so by the tutor (this happened
only once during all of the stages of the study and therefore this frame usually remained
empty);

• the text and maths editor (marked Chat in figure;

• the history of the interaction frame (to the right of the figure), through which the students
could scroll at any time during a session.

Figure 2.1: Student’s screen

The text and maths editor was split into 3 parts:
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1. the preamble text frame (top panel of Chat)in which the students could type the text preceed-
ing any mathematical formulae

2. the maths frame (middle panel) in which they could write mathematical formulae. To ease
the writing of those, the maths editor was equipped with maths templates from which the
students could select a set of pre-defined formulae appropriate for a given excercise. The
templates were editable.

3. the text editor (lower panel) for the text following a maths formulae.

The tutor’s screen shown in figure 2.2 consisted of five parts:

1. the text and maths editor as in the student’s window;

2. the preview frame for viewing the feedback typed by the tutor prior to it being sent to the
student;

3. the exercises frame (below the preview frame) in which a number of chain rule exercises were
provided to the tutors for use during the session. The exercises were ordered based on two
of the participating tutors’ experience and according to their assessment of the difficulty of
the exercises relative to the expected overall competency of the participating students. The
tutors could click on a given exercise for it to appear in the maths editor frame;

4. the history of the interaction frame (lower left panel of the figure), through which the tutor
could scroll at any time during a session;

5. the “current situation” frame which the tutor used to identify the situational factors and
their values relevant to their responses. A set of pre-defined factors was provided to the
tutors in order to ease their task. These factors included the set of eight situational factors
validated by Porayska-Pomsta (Porayska-Pomsta, 2003), and two additional factors such as
student’s effort and student’s emotional state.

In addition to the screen within which the tutors could interact with the students and select situ-
ational factors, tutors were provided with a second screen which was connected to the student’s
computer and through which they could observe all student actions regardless of whether or not
they were actually submitted by the student.

2.3.4 Procedure and data collection methodology

In all three stages of the study the material concentrated on was symbolic differentiation as a
meaningful self-contained subset of calculus, in particular the chain rule. This subset was se-
lected for a number of reasons: (a) it is a significant part of the curriculum at both school and
university level; (b) university and high school mathematics tutors had recommended it as an
area where students have difficulty and require practise and revision; (c) in addition to differen-
tiation skills, there are a range of skills required for differentiation including algebra, bracketing,
handling fractions, square roots and trigonometric functions.

Tutors and students were trained to use their respective interfaces. In both cases the training
included an experimenter explaining to the participants the interface and the kinds of facilities
that it provides. To ease the cognitive load on the tutors during the interactions, tutors were
allowed to get used to their tasks during mock sessions with an experimenter.

For tutors the procedure was the same in all three stages of the study, while for students it
changed between stage-2 and stage-3. Both tutors and the students were asked to interact with
one another through the chat interface provided to them.
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Figure 2.2: Tutors chat interface and situational factors selection tool
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During each session, the student screen was video-recorded for the purpose of replay and post-
hoc walkthroughs with the tutors. Additionally, keyboard actions and mouse movements were
recorded using a key-capture program. Immediately after each session, both tutors and students
were interviewed using a semi-structured interview protocol. Different protocols were used for
students and tutors. All interviews with the tutors were audio-recorded for the purpose of future
data analysis. In the case of the students, only the stage-3 interviews and verbal protocols were
audio recorded.

At stage-3, the students were also asked to provide a verbal protocol in relation to the interaction
with the tutor. This change was made based on the preliminary analysis of the data gathered in
stage-2 which indicated that because of the restricted channel of communication imposed on the
tutors in our studies, the tutors found it virtually impossible to diagnose the students affective
states. Asking the students to keep verbal protocols was to allow them to report on their states
during the interactions, with the view of gathering data relevant to students’ affect and cognitive
prefences which could then be triangulated with the data obtained from the tutors’ side. To
facilitate this, students were prompted (by the observer) to comment on what they were thinking
and what they were feeling throughout the interaction.

While interacting with the students, the tutors’ task was to select the situational factors every
time they provided the student with feedback. While in the pilot study this request was made
by an experimenter only verbally, in stage-2 the selection of factors was enforced by the fact that
the situational factors frame was “hooked up” to the chat frame. This change was introduced
based on the observation of the irregularity with which the tutors selected the factors during
stage-1 and it also addressed the two pilot tutors’ suggestion that this could be improved by
having the system “remind” them of the necessity of making such selections. Consequently, in
stage-2 and stage-3 the tutors were not allowed to submit their response to the student until they
submitted the factors – they were reminded of this by the “...update factors ... ” message which
was displayed in their preview frame. The tutors could submit the factors either by clicking the
“submit” button, or by clicking the “no change” button. The use of the latter indicates that there
was no change in the factors between the previous and the current situation.

Although a set of pre-defined factors was provided for the tutor to choose from, the tutors were
given the flexibility to add other factors to the existing set. The list of factors provided in the pilot
was slightly smaller than the one provided in the stage-2 and stage-3, but the selection process
remained essentially the same. The only new factor that we added in stage-2 was emotional state
which was suggested by one of the pilot tutors as potentially useful. Allowing the tutors the
flexibility of adding new factors meant that instead of having to think about the meaning of the
factors pre-specified by us, the tutors were given an opportunity to specify situations in their
own terms (during the later walkthroughs they were questioned about the meaning of the labels
that they chose). For some of the participating tutors, this also eased their overall task of having
to use the interface while engaging in a meaningful dialogue with the student, it led to quicker
tutor response delivery, and in a more in-depth insight into what may trigger tutor’s various
responses.

As well as being asked to engage in a tutorial interaction with the student and selecting the
situational factors for each response, the tutors were also asked in all versions of the study to talk
aloud (i.e. to keep a verbal protocol) about any and every possible aspect of the interaction. This
was to gain an additional insight to the tutors’ thought processes during the sessions, especially
with respect to the evidence that they used in determining the values of various factors. For each
completed interaction, the tutors were invited back to participate in a post-hoc walkthrough. A
cognitive walkthrough is a procedure which allows the tutor and the experimenter to see a specific
interaction with a student again, to discuss any aspect of the interaction in detail, and for the
tutor to indicate any change in their assessment of the situation if necessary. The changes made
during walkthroughs were recorded in addition to the original submissions made by the tutor
during a given interaction. This consisted of a synchronised replay of:
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1. what was happening on the student screen during a given interaction

2. the audio recording of the tutor’s verbal protocol

3. the situational factors interface showing the selected situation for each of the resposes that
they made to the student

In preparation for every walkthrough the experimenters replayed the corresponding interaction
in the same way as it would be shown to the tutor during the walkthrough in order to gather the
relevant questions and note points of interest. During the walkthrough the replay was paused
as needed and the tutor was asked the questions prepared on the basis of the replay. Although
we are still in the process of analysing the data gathered through walkthroughs, it has already
proved invaluable for identifying various sources of evidence for determining the individual
factor values, for mining the possible rules for combining the sources of evidence to infer factor
values, and for understanding why the tutors chose to act in particular ways in specific situations.
For tutors, the walkthroughs presented an oppportunity to correct the factor values for situations
in which they may have been left unchanged because of tutors’ cognitive overload during the
interactions, or where the tutors observed additional evidence while listening to their own verbal
protocols in conjunction with observing the replays of students’ screen.

A number of customised tools were developed to facilitate data analysis.

2.3.5 Preliminary results

The analysis presented here is only of the data gathered in stage-2 where a total of 12 interactions
took place. Our aim of the data analysis was two-fold:

1. We wanted to find out what factors the tutors consider when deciding on their feedback
and how often these factors are used across all interactions. The purpose of this was to
establish a set of situational factors that should constitute the input variables to the situation
model and for which evidence may need to be gathered, as well as to determine other
factors relevant to learner modelling.

2. For each factor we also wanted to identify the sources of evidence that tutors typically rely
on in determining the individual factor values.

With respect to these two general aims we relied on a number of working hypotheses and as-
sumptions:

• Hypothesis 1 (H1) states that there is a number of different situational factors that the
tutors rely on when making their feedback decisions.

• Hypothesis 2 (H2) states that there are differences in the relative importance of the situa-
tional factors to tutors’ decisions.

– Assumption 1 (A1) states that relative importance means the relative relevance of a
factor to tutors’ decisions.

• Hypothesis 3 (H3) states that tutors are able to diagnose student affective states relevant to
their learning.

• Hypothesis 4 (H4) states that mouse movements constitute a reliable source of evidence on
the basis of which tutors can infer students’ affective states.
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– Assumption 2 (A2) states that mouse movements are observed by human tutors while
they enagage in interactions with students via a chat interface (e.g. de Vicente, 2002).
This assumption is also one of the main reasons for the tutors being shown students’
screen during the interactions and for the mouse and keyboard actions data being
recorded.

Our descriptive analysis led to our acceptance of H1. In particular, we established that the total
number of situations reported for all interactions is 309 with an average of 25.75 situations being
reported in each interaction. Out of the total of 309 situations, 144 (46.6% of all situations) are
unique situational factor-value combinations. The fact that near half of the situations reported
by the tutors were unique suggests not only that tutors are able to determine the situations while
engaging in the tutorial interactions, but also that different factors are involved in supporting
their decisions. Our further analysis revealed that in total 14 situational factors were used during
the 12 interactions and across 4 tutors, with 10 situational factors being set up by us a priori and
4 factors being added by the tutors during interactions.

In order to test the second hypothesis H2 we relied on our first assumption A1. Amongst the
default situational factor values provided in the situational diagnosis tool we included the value
“Irrelevant” to allow the tutors to indicate when a factor was not considered important to their
decisions. We used this value to perform frequency count to reveal the relative importance of
each factor to tutors’ decisions across all interactions. Figure 2.3 illustrates our findings.

We identified 5 groups of factors each with a decreasing relevance to tutors’ decisions. The most
important factors of which the frequency count (FC) is above 200 out of the total of 309 recorded
situations include correctness of student’s answer with FC = 259, student’s confidence (FC =
250), student’s aptitude (FC = 222), and student’s interest (FC = 214).

The second group with the overall frequency count above 150 includes difficulty of material (FC
= 183) and importance of material (FC = 165).

The third group of factors used over a 100 times includes student effort (FC = 140) and amount
of session time left (FC = 119).

Two factors were use more than 50 times: student’s knowledge (FC = 78) and amount of material
left to cover in the current session (FC = 76).

The group of the least important factors used less than 50 times by different tutors across inter-
actions includes student’s emotional state (FC = 46), relative difficulty (FC = 41), interface (FC
= 38) and goal (FC = 37).

The results of the frequency count for the value “Irrelevant” support our second hypothesis H2 as
they show that not all the factors are equally important to tutors’ decisions across the board. What
these results give us is a systematic, empirically supported way of selecting the factors which are
essential to our model. These include most factors in the first, second, third and possibly fourth
group, but probably not in the fith group where the factors were used between different tutors
less than 50 times in total. Ultimately our decisions regarding the inclusion of a factor in our
system rely primarily on whether or not we find further support for or against it in other data
sources that we gathered such as verbal protocols, interviews and walkthroughs. For example,
the goal and interface are not only used very infrequently, but they are also used by only one
out of five tutors who additionally found it virtually impossible to define the meaning of the
two factors in a systematic way or to point to the sources of evidence in students’ behaviour
that could be used to infer such meaning. Without such information from the tutor it becomes
very arbitrary an affair to define the way in which the values of the factors can be inferred, what
values are relevant at all and how they may interact with other relevant factors. This is certainly a
problem which we also encountered with student’s emotional state factor which again was used
very infrequently by the tutors. This in itself undermines the support for our third hypothesis
H3, which states that tutors are able to diagnose student affective states.
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Figure 2.3: Relevance of individual factors to tutors’ decisions

©LEACTIVEMATH Consortium 2005 Page 24 of 133



Deliverable D10
Student Model Specification

LEACTIVEMATH (IST-507826)

In relation to the third hypothesis H3, an examination of the data obtained from the verbal proto-
cols, the interviews and the walkthroughs reveals that tutors find it virtually impossible to detect
students’ emotional states through a channel of communication which is restricted to typed in-
teractions. More significantly, in relation to the fourth hypothesis H4, different tutors pointed out
that although mouse actions data is made available to them through access to students’ screen
and although they do spot “weird”, “funny” or “unusual” mouse movements, they do not have
any way in which to interpret those in terms of student’s emotions or other relevant situational
factors. So whilst Assumption 2 holds, it does not in this case appear to aid diagnose. For this
reason mouse movement data will not be used for diagnosis within LEACTIVEMATH.

Our analysis to date, together with tutors comments, shows very clearly that the only reliable
source of evidence available to tutors is when students self-report on their affective states and
even these are typically reports of enjoyment or enthusiasm about the aspects of the interactions.
These findings are very relevant to the way which the main responsibilities with respect to di-
agnosing the situational factors are distributed between the subcomponents of the xLM and the
GUI, especially between the Situation Model which relies primarily on the evidence available
from observing student’s behaviour, and the GUI which provides students with facilities to self-
report. Our findings have also led to the changes in the design of stage-3 of the study, which now
explicitly includes the collection of students’ verbal protocols. The data collected through stu-
dent verbal protocols is intended to provide support for further design of the GUI with respect
to diagnosing students’ affective states. Preliminary evidence in stage-3 suggests that students
most frequently comment on perceived difficulty of the sub-task, and their confidence in their
answer,

2.4 The design

The Learner Model is a collection of beliefs about the learner’s states and characteristics specified
along five dimensions (see figure 2.4):

1. the subject domain,

2. (mathematical) competencies,

3. motivation,

4. affect,

5. metacognition and

6. CAPEs (Conceptual and Procedural Errors)

Each of these dimensions can be seen as a map which specifies the individual factors or attributes
of the processes relevant to learning and considered by the Learner Model. The dimensions also
specify how the different factors and attributes relate to each other. For example:

• the subject domain breaks down into domain topics such as "Chain Rule", "Function", "Deriva-
tive", etc.

• mathematical competencies is decomposed into "Thinking mathematically", "Solving math-
ematical problems", etc.

• motivation is decomposed into factors that are influencing the learner’s motivation such
as student’s interest, student’s confidence or effort that the student puts into learning the
material.
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Figure 2.4: The Learner Model is a collection of beliefs specified by several maps defining various
learner’s states and characteristics.

The exact definition of these maps and what evidence supports the diagnosis of the learner’s
characteristics will be described in section 4.4.

The five dimensions are used to establish the method of communication between other compo-
nents of the system and the Learner Model, as well the way in which learners will be able to
question the Learner Model about its beliefs. For example, questions like "What is the learner’s
level of competency in Mathematical Thinking?", "What do you think the learner knows about
the chain rule?", "What is the learner’s current confidence level?", etc. can be asked to the Learner
Model, prompting it to retrieve (and possibly present in a particular form) the beliefs related to
the query. The overall dimensions themselves can also be queried, as they represent the com-
bination of all the individual attributes they contain: the Learner Model could therefore answer
to queries such as "What is the overall motivation of the learner?" by combining all belief about
each motivational factors held in the model.

An extra level of structure is taken into account in the Learner Model, specifying how the dimen-
sions interact with each other (see figure 2.5).

At the bottom of the layer stands the subject domain. It underlines the fact that learning does
not take place in a vacuum but relies on domain and content. The Learner Model does not hold
any belief about the domain per se but does hold beliefs about upper dimensions of the model
in relation to the domain; domain topics could be seen as placeholders for the system’s beliefs
about the learner. This is consistent with the principles of a learner model, which represents
information about the learner’s states and characteristics in a learning situation and not about
the domain addressed by the learning activities.
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Figure 2.5: A multi-layered model of learner.

On top of the subject domain, (mathematical) competencies, motivation, affect and metacognition
stand in a layered fashion, relying on the previous ones for expressing and grounding beliefs
about the learner’s:

• mathematical competency on the domain (i.e. "What is the learner’s level of mathematical com-
petency on the chain rule?", "What is the learner’s overall level for solving mathematical prob-
lems?");

• affective state about the domain (i.e. "What is the learner’s level of anxiety about the chain
rule?") or about his/her mathematical competency on the domain (i.e. "What is the learner’s
level of satisfaction with solving problems about the chain rule?");

• motivational state about the domain (i.e. "What is the learner’s level of confidence about the
chain rule?") or about his/her mathematical competency on the domain (i.e. "What is the
learner’s level of confidence on his ability to solve problems?") ;

• metacognitive ability to handle his/her mathematical competency on the domain (i.e. "What
is the learner’s ability in monitoring his/her competence to solve problems related to the chain
rule?");

• metacognitive ability to handle his/her affective state about the domain or about his/her
mathematical competency on the domain (i.e. "What is the learner’s ability in monitoring
his/her satisfaction when solving problems?");

• metacognitive ability to handle his/her motivational state about the domain or about his/her
mathematical competency on the domain (i.e. "What is the learner’s ability in controlling
his/her confidence when solving problems?");

The last dimension of the model, the CAPEs, does not really fit into the model as it includes in-
formation that is usually cross-dimensional. Nevertheless CAPEs could be related to the subject
domain, in the sense that, whatever the nature of CAPEs taken into consideration (i.e. buggy
rules, misconceptions, etc.), they can be clearly identified through the context in which they oc-
cur, in this case the subject domain.

Such an organisation of the Learner Model extends significantly its power of expressivity, as it
holds beliefs not only about the motivational state of the learner (as a whole) but also it makes ex-
plicit extent to which such motivational state is related to the competencies of the learner or to the
subject domain. How these beliefs are structured and queried will be described in section 4.4.3.
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Finally – and perhaps the most important aspect – the internal structure of the maps (i.e. how
their elementary attributes are related to each other) is also used by the Learner Model for con-
trolling the propagation of evidence when beliefs are updated. For example, the structure of
the "subject domain" map is used to define how new evidence about the learner’s state and be-
haviour about the "chain rule" will be propagated to neighbour topics such as "product rule",
"derivation rules", etc. The propagation of evidence across the dimensions of the domain is a
crucial factor of the Learner Model and will be described in section 4.4.4.

The situation model is the component of the xLM which performs situational diagnosis at every
point at which a response from the tutor may be required. Based on such a diagnosis, the model
also makes recommendations as to the next optimal tutorial feedback. The main high level re-
sponsibility of the Situation Model is to account for student motivation by diagnosing student
motivational factors such as their self-confidence, interest in the task, and effort that they put into
learning. Such diagnosis happens in the context of other situational factors and their values be-
ing determined such as the difficulty and importnace of material, their aptitude, correctness of their
answers as well as the current state of their knowledge. The purpose of the situation model is to
negotiate and strike a balance between the student’s wants and needs and the motivational goals
of the tutor, and other situational factors and tutor goals that may arise from those factors and
which goals may conflict with the motivational goals. For example, if student confidence is diag-
nosed as low then according to the situation model the tutor goal will be to boost it. However if
correctness of student’s answer is diagnosed as incorrect, then the tutor’s goal will be to correct
it. To provide the student with corrective feedback inevitably means to tell the student that their
answer was incorrect which potentially may lead to student’s confidence being dented further
rather than boosted. The situation model provides means by which to take all of the available
situational information into account and to come up with a balanced way in which to inform the
student of a problem in their answer. The end result of such a balancing act is to recommend
potentially the best way through which the tutor can achieve its goals without compromising the
particular students’ motivation. Achieving such balance is at the core of successful adaptation to
the specifc users in ways which are communicatively, socially and educationally effective.

Thus, the Situation Model has two responsibilities: (1) to diagnose the immediate situation in
terms of a number of situational factors including student motivational factors and (2) to recom-
mend the appropriate type of action that may be taken in the situation diagnosed. Immediate
situation is a situation which is pertinent to specific feedback decisions made by the tutor as a
response to a learner’s action at a unique point in a given session. The diagnosis performed by
the situational model is therefore local and does not extend to longer term characteristics of the
student such as their overall confidence in being able to tackle the material, or their overall in-
terest in the material learned. However, the situation model provides the Learner Model with a
basis for inferring the longer terms characteristics in a cumulative way by storing the results of
the local diagnosis in the Learner History for all to see and to use. In turn, student longer term
characteristics which are inferred by the Learner Model can be used as part of the evidence for
the relevant inferences of the situational factors and their values made by the Situation Model at
a local level. For example, if the cumulative (i.e. longer term) value for student’s confidence has
been established up to a current point in the interaction as high, but based on other evidence in
student’s current behaviour the current value of confidence can be said to be low and the correctness
of student’s answer is incorrect then given the overall high level of confidence, the tutor may be
able to afford to be more direct in the way that it provides the student with corrective feedback
than if the cumulative value of confidence for that student were low. The varying the levels of
directness of feedback is one way in which the output of the situation model can be use by other
components of LEACTIVEMATH, in particular by the Dialogue Manager. Details of both the di-
agnosis agent, the inputs and the outputs of the situation model are given in section 4.5 along
with the description of the way in which the Situation Model outputs contribute to the effect of
an adaptive LEACTIVEMATH.
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Chapter 3

Learning scenarios

This section gives an overview of how the Extended Learner Model could support the learning
scenarios embedded in LEACTIVEMATH. The following list gives an overview of the scenar-
ios currently specified by WP6 (for the coming deliverable D20) and to be implemented by the
Tutorial Component (for generating courses).

TeachNew generate an in-depth course that provides to the student all necessary knowledge to
fully understand the target concepts. The course contains concepts (definitions and theo-
rems) and all types of satellite elements (exercises, examples, text elements).

Rehearse a course that specifically addresses deficiencies of the student with respect to the tar-
get concepts. The course contains concepts and examples that serve to illustrate usage of
the concepts. The course does not contain text elements like introductions. Collections of
exercises conclude the course and support active understanding of the learner.

Overview a course that provides the student with an abstract and general understanding of
the target concepts. The course contains concepts and examples to illustrate usage of the
concepts .

trainCompetency a course that trains a given competency with respect to target concepts. The
course consists of concepts, examples, and several exercises. Ideally, the learner interacts
with the system in order to select the competencies that are trained. E.g., the user selects
the scenario, the system then presents competency mastery, and learner selects the compe-
tencies on this basis.

Workbook a course that trains all competencies of the user with respect to the target concepts.
It consists of a collection of exercises.

ExamSimulation a course that consists of exercises training all competencies and of all difficulty
levels.

3.1 Learner Model and Learner History

As described in section 2.4, the LM build a cumulative portrait of the learner’s mathematical com-
petency, motivational and affective states, metacognitive abilities, as well as his/her Conceptual
and Procedural Errors (CAPEs), whereas the LH maintains an accurate digest of the learner’s
activities with the system. Both these sources of information could be queried at anytime by
LEACTIVEMATH (e.g. "What is the level of motivation of the learner?", "Did the learner perform
this exercise and what was its outcome?", etc.), using it for making tutorial decisions.

For example, to initiate the trainCompetency scenario, the Tutorial Component requests from
the LM an overview of the learner’s mastery in each of the eight competencies considered in the
Learner Model. Based on this digest, the TC displays at the interface a digest of the LM beliefs
for the learner to choose which competency to train (alternatively, the TC could suggest it).
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3.2 Situation Model

The following stages reflect the general usage of the Situation Model.

1. The learner specifies a scenario and a course is generated.

2. The learner starts to do the first exercise.

3. In the course of the exercise evidence is collected in relation to the various situational fac-
tors, with the outcome being recommendations of specific autonomy and approval values.

4. At various choice points in the exercise, a particular method is selected based on the current
autonomy and approval values.

5. In the dialogue based system, feedback selection will be based on the current autonomy
and approval values.

6. The value of autonomy is assigned a strength to acknowledge the current scenario, for
example, for TeachNew the strength of the recommendation for autonomy is decreased;
however, for Exam Simulation it is increased.

7. On completion of the current exercise the next exercise selection is also informed by the
autonomy and approval values, as is the directness of any suggestions made to the learner.

The LEACTIVEMATH system will adapt to the learner according to the current situation. For
particular scenarios the strength of the recommendations made by the Situation Model will vary.
For example, the autonomy and approval values will have little impact on the learner’s selection
of the particular competency on which to focus in the TrainCompetency scenario, even if high
autonomy is recommended: in this case control will be with the LEACTIVEMATH system. In the
ExamSimulation scenario any choices that relate to the selection of competency and difficulty
levels of exercises will be limited, i.e. the strength of Situation Model recommendations will be
increased. In Workbook, TeachNew and Rehearse scenarios the strength of recommendations
will be generally decreased.

3.3 Open Learner Model

A generic usage of the OLM can be described in terms of the following stages:

1. At some point during the session, the learner launch the OLM.

2. The learner navigates in the OLM, looking for some topic worth talking about.

3. The learner queries the OLM about its judgment concerning some particular topic (e.g.
the chain rule or his/her overall level of motivation) and challenges the OLM about its
conclusion.

4. The OLM justifies its judgment by showing how it gradually came to that current conclu-
sion about the learner’s abilities regarding the queried topic.

5. The learner could challenge the OLM judgment, for example when being confident that
his/her motivation on some exercise, critical as an evidence for the judgment, has been in-
correctly assessed. After negotiation, the OLM and the learner could come to an agreement
about what was his/her level of motivation. The Learner Model is informed (by way of
the Learner History) that a new source of evidence regarding this topic has to be taken into
account and starts updating the beliefs 1.

1But this is a different story.
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From this outline, several elements of adaptativity in relation to the learning scenarios can be
envisaged.

A first example concerns the availability of the OLM to the learner. A scenario like ExamSimu-
lation could be right not to allow the learner to access his/her OLM. More interestingly, the ini-
tiative of launching the OLM could be made by the system. For example, the trainCompetency
scenario may suggest the learner to use the OLM in order to explore his/her achievements, either
after a given time or after a given number of exercises or even after a certain level of competency
is attained by the learner.

As another example, the trainCompetency scenario implies that the generated course will focus
on a particular competency. This will be insured at the level of the content integrated in a book.
Obviously, one can expect Learner Model to contain beliefs beyond this competency (after all,
the learner may have already used LEACTIVEMATH in different context). But the OLM, as an
externalisation tool for the LM, could be ask to hide some of the topics available to discussion
with the learner (in this situation, only topics related to the competencies selected by the learner).
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Chapter 4

Specification

This part aims to clarify the major decisions that have been made about the subcomponents and
how they will operate. The decision has therefore been taken to gloss over the specific, low level
details which may change significantly in favour of those higher level constructs which can be
relied upon to remain stable over the lifetime of the project.

The architecture of the xLM and its relationship to the other components in the LEACTIVEMATH
project is the subject of section 4.1 where various information flows are described. Sufficient
detail is provided to ensure that other partners in the project will understand how their com-
ponents will work with xLM without needing to be concerned with unnecessary detail. The
internal architecture for xLM is provided in order that each of the subcomponents in the xLM
can be specified — this includes the LM, LH, SM and the OLM.

The Learner History is described in section 4.3. The Learner Model is described in section 4.4.
The Situation Model is defined in section 4.5.

The Open Learner Model is the subcomponent that still needs the most further work since the
main distinction between the functionality of the LM and of the OLM relates to the interactions
held between the learner and the system and the importance of justifying various decisions made
by the LM/OLM. The specification laid out in section 4.6 is sufficient for determining both the
implications for other components which need to support the OLM and which need to draw on
the OLM for its results. The GUI for the OLM will need to be refined but this is mainly of concern
to the team working on the OLM.

4.1 The architecture of xLM

This section presents a coarse-grain, logical view of the architecture of the Extended Learner
Model in the context of LEACTIVEMATH.

• It provides a framework for discussion of the learner model and its surroundings, by mak-
ing explicit the components integrating this part of LEACTIVEMATH and the relations be-
tween them and with other components of LEACTIVEMATH.

• It makes explicit the expected flow of information between components of xLM, as well as
between components of xLM and other components in LEACTIVEMATH, without going to
much into the details of the particular of each (type of) information exchange.

• It suggests a grouping of the components of LEACTIVEMATH following the classical archi-
tecture of intelligent tutoring systems, providing a general view of the whole system and
clarifying the role of each component.

The architecture of xLM described below follows a component-based design and it is based on
current ACTIVEMATH architecture plus the new components to be developed for LEACTIVE-
MATH. It is intended as being broad enough to provide a logical description of xLM in the context
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of LEACTIVEMATH, yet to be sufficiently detailed to allow the distribution of xLM’s main func-
tionalities among a set of clearly distinguished but tightly related components. The existence (or
not) of information flow between components, inside xLM and between xLM components and
external components, is made explicit so that any relaxation of the restrictions now imposed in
the actual implementation should be justified.

4.1.1 Architecture

Figure 4.1 depicts a coarse-grain view of the LEACTIVEMATH architecture using the classical log-
ical arquitecture of intelligent tutoring systems Burns and Capps (1988) focused on the learner
modelling module. Since the components of LEACTIVEMATH are designed with more specific
functionalities than the classical modules of intelligent tutoring systems, they are regarded as
parts of higher level subsystem corresponding to the classical learner model, domain (knowl-
edge) expert, tutorial and interface modules. Every small box inside the big subsystems rep-
resents a component of LEACTIVEMATH, including both data and processes. In particular, the
components comprised in Work Package 4 are regarded as serving the shared purpose of pro-
viding LEACTIVEMATH with a reliable representation of the learner in the context of their inter-
action with the system, and hence are put together inside the Extended Learner Model. A brief
description of subsystems and components in figure 4.1 is given further below.

In the diagram, arrows connecting components represent information flow between them. More
specifically, an arrow connecting component S to component R means either that

• component R requests information from component S and this sends the information back,
or

• component S informs or commands component R by sending information.

An arrow starting or leading to a subsystem stands for the corresponding set of arrows starting
or leading to every one of the components in the subsystem.

The diagram in figure 4.1 depicts the whole set of information flow occurring between xLM com-
ponents, as well as information flow occurring between xLM components and other components
of LEACTIVEMATH. However, neither the diagram nor the description below are complete in
matters completely outside the Extended Learner Model, such as information flow in between
components in the Tutorial Subsystem. A more complete and detailed description of LEACTIVE-
MATH architecture can be found in deliverable D8: Open Architecture LeActiveMath Partners
(2004b)

4.1.2 Components of relevance for learner modelling

Domain Knowledge Subsystem (DK) The components in this subsystem are responsible, as a
whole, for providing a description of the subject domain suitable for learner modelling.
They could also provide domain reasoning services to other components, such as the Dia-
logue Manager, but this is not discussed further here.

Interface Subsystem (IS) The components in this subsystem are in charge of presenting infor-
mation to the learner and getting information from them.

Dialogue Manager (DM) This is the component in charge of facilitating natural dialogue inter-
action to LEACTIVEMATH, including natural language understanding and generation.

Tutorial Component (TC) This component is responsible for making the strategic pedagogical
moves for optimising the learning process.
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Figure 4.1: Proposed architecture for LEACTIVEMATH in relation to the learner model. Yellow (grey)
boxes represent components of LEACTIVEMATH regarded as directly involved in the learner mod-
elling process and hence included in the Extended Learner Model subsystem. Arrows in the diagram
represent information flow between components.
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Exercise Subsystem (ES) This component is in charge of executing exercises for learners to in-
teract with them. As the Extended Learner Model, this is a subsystem that actually exists
as such in LEACTIVEMATH.

Learner History (LH) This component manages the storage and retrieval of all historical infor-
mation that is regarded as relevant for learner modelling.

User Manager (UM) This component deals with users in an application-neutral sense, storing
general information about them such as their names and usernames, logins and logouts,
as well as general educational information, particularly information that is provided and
modified by learners, such as field of interest and educational level.

Learner Model (LM) This is the component responsible for maintaining a faithful representa-
tion of the state of every individual learner. It is used for LEACTIVEMATH adaptation of
learning experiences to each learner’s educational needs.

Open Learner Model (OLM) This component provides the learner with access to the LEAC-
TIVEMATH model of them, including facilities for the learner to alter their model either
directly or indirectly.

Situation Model (SM) This component is responsible for capturing aspects of the situational
context which are pertinent to tutors adapting their feedback to the individual cognitive
and affective needs of the students and for diagnosing the degree to which a given stu-
dent in a specific situation may need to be given freedom of initiative and may need to be
approved of explicitly.

4.1.3 Examples of information exchange

Some examples of information exchange between the distinct components depicted in figure 4.1
are given below. The examples are very simplified, in the sense that they do not consider all in-
formation exchanged at a given point in time, which may include time stamping, original source
of information, etc.

IS →

OLM A learner action, such as asking for evidence supporting a belief in the learner model.

LH An event associated with an input device.

OLM →

UI An instruction to change the presentation of an updated belief (e.g. changing colour
from red to yellow).

LH An action taken by the learner (e.g. challenging the system belief on being competent
in mathematical modelling).

LM →

LH A change in a belief on a learner’s competency.

OLM The current belief on the learner’s knowledge of a topic (e.g. belief on the current
learner’s knowledge of the chain rule).

SM Current belief on the learner’s level of self-confidence.

DM Current belief on the learner’s competency of a topic.

TC Current belief on the general learner’s interest in the subject domain.

UM The complete learner model for a given learner.
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DK → LM Structure of the subject domain knowledge (e.g. structure of domain knowledge for
calculus) to be used for constructing the learner model.

SM →

LH Change in the learner motivational state (believed to happen, for example, on the basis
of learner hesitation in answering a question or in completing an step in an exercise.).

DM Levels of approval and autonomy recommended for the current learner.

TC Levels of approval and autonomy recommended for the current learner.

LH →

LM New event in learner interaction with the dialogue manager (e.g. request for help).

OLM Last change to the belief on the learner’s knowledge of a topic.

SM Number of events of a particularly type that occurred in the current session (e.g. num-
ber of help requests).

DM Last occurrence of a particular type of event involving the current user (e.g. last time
the learner carried out a derivation of a trigonometric function).

TC List of events of a particular type involving the current user (e.g. all exercises started
by the learner in the current session).

DM →

LH An action executed by the learner and its evaluation (e.g. the learner has failed at de-
riving sin(x) on her own).

TC →

LH Amount of time the learner spent on dealing with a particular exercise.

ES → LH Events related to learner interaction with an exercise (e.g. the learner has chosen a
wrong answer in a multiple choice question).

UM → LH Login events for learners.

4.1.4 Rationale

The justification for the logical architecture of the Extended Learner Model described above is
given below following Carroll’s approach of describing its causal schemata as a set of claims
Carroll and Rosson (1992).

Claim 4.1.1 LM gets information from DK.

Supports LM critical activities of initial construction and posterior updating of learner models,
and opens the door to learner modelling in several domains. It also promotes independence
between components and promises easier decoupling of xLM from the rest of LEACTIVEMATH
(e.g. to act as an independent provider of learner modelling services).

Because LM needs to access information concerning the structure of the domain and relevant
characteristics of learning activities, in order to build and update learner models. Keeping the
description of the domain in DK, and providing it to LM as needed, encourages the use of a
sharable domain description in LEACTIVEMATH, and of flexible modelling mechanisms in LM
which (within reasonable limits) can be adapted to several domains.
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Check rule(s) are (a) the existence of a sharable domain description among the LEACTIVEMATH
components in DK; (b) the existence of suitable services in DK and, if needed, corresponding
methods in LM; and (c) the consistency between concurrent LM and DK contents.

Issue(s) are the selection of both an appropriate scheme for describing LEACTIVEMATH do-
main(s), which should be adaptable to other (similar) domains, and of the communication mech-
anism employed to deliver information from DK to LM.

Claim 4.1.2 LH is the single source of information for updating a learner model.

Supports the justifiability of a learner model in terms of the corresponding learner history.

Because every belief stored in LM will be based on evidence stored in LH. Any information com-
ing from any other component, such as TC or DM, must to go through (and be stored in) LH.

An important consequence of this decision is that there must be no direct manipulation of LM by
its open counterpart (OLM). In order to have any influence on LM, OLM must send information
through the LH.

Check rule(s) are (a) the enforcement by the implementation of xLM logical architecture that
evidence used for updating learner models is stored in their learner histories, and (b) the en-
forcement of cosistency between changes in LH and LM by learner modelling algorithms (and
their implementation).

Issue(s) is the bandwidth of the communication channel between the Learner Model and the
Learner History, which needs to support practical dynamic modelling of the learner.

Claim 4.1.3 LM and SM can send information to LH.

Supports accountability of learner models and situation models to the view of learners and other
stake-holders. Furthermore, it also supports the use of situation models, which are localised to
the ongoing situation, as evidence for longer term learner models.

Because changes to a learner and situation models can be registered into the corresponding
learner history.

Check rule(s) are (a) the existence of suitable communication mechanisms from LM and SM to
LH, as well as

(b) the existence of records in learner histories that are consistent with changes in the correspond-
ing learner and situation models.

Issue(s) is the amount of information that may accumulate in LH as a consequence of many
learner and situation models changing over time.

Claim 4.1.4 SM has access to both LM and LH.

Supports situation models to be built on the basis of what is believed about the learner (in LM)
and past events related to the learner (in LH).

Because access to LM allows SM to build/initialise its models and hence to provide suggestion
to other components on the basis of beliefs inferred by LM, whilst access to LH empowers SM to
develop its own beliefs about a learner independently to (and not limited by) the learner model.

Check rule(s) is the existence of suitable communication mechanisms from LM and LH to SM.

Claim 4.1.5 OLM have access to both LM and LH.

Supports presentation and justification of learner models to learners.

Because LM can provide the beliefs hold about the learner, whereas LH can provide all the
evidence supporting such beliefs (claim 4.1.2).
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Check rule(s) are the availability of suitable access methods in LM and LH, accessible to OLM.

Issue(s) the existence of a general framework for identifying beliefs and related evidence, so that
OLM (and other components) can request LM and LH for specific information.

Claim 4.1.6 OLM and UI can exchange information in both directions.

Supports OLM to timely interact with learners, displaying information and receiving feedback.

Because OLM can make use of the interaction facilities provided by UI.

Check rule(s) is the existence of suitable communication mechanisms on both sides.

Issue(s) are the way in which the communication mechanisms should be implemented, taking
into account the browser-based nature of LEACTIVEMATH. It is possible for some parts of OLM
to be located on the client side (learner’s computer) directly controlling the user interface.

Claim 4.1.7 LM, LH and SM provide access mechanisms to components outside the xLM subsystem,
such as UM, DM and TC.

Supports adaptation of LEACTIVEMATH to the goals, cognitive, motivational and affective needs
of learners.

Because other components in the system, especially DM and TC, can make use of the inferences
made by xLM about the current cognitive, affective and emotive state of the learner, which are
expected to be reliable. UM access to LM makes it possible for UM to act as a proxy of LM to
the rest of xLM, providing in that way a single access point to information about the learner state
and characteristics.

Check rule(s) will be the existence of such access mechanisms available to LEACTIVEMATH
components outside xLM.

Issue(s) are the way in which such mechanisms are going to be available. Given the distributed
nature of LEACTIVEMATH, it can be expected xLM to serve components running on distinct
computers connected through the Internet1.

Claim 4.1.8 UM provides access mechanisms to LM.

Supports independence between components and promises easier decoupling of xLM from the
rest of LEACTIVEMATH

Because it makes possible for LM to serve as the single point of information about the learner
state and characteristics inside xLM, an equivalent role to the one played by UM outside xLM.
This information can be used by OLM, for example, to tailor communication to each individual
learner (e.g. calling her by her name).

Check rule(s) is the existence of access mechanism from UM to LM.

Issue(s) is the definition of a suitable minimum set of management information necessary for
xLM internal operation.

4.2 xLM communication architecture

Figure 4.2 depicts the information flow architecture of Extended Learner Model including details
of the two ways in which information flows in between components and subsystems of LEAC-
TIVEMATH: method calls and event publication.

1Actually, it may even be the case for distinct components inside xLM to live in distinct computers.
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• Information flow via synchronous communication, as methods calls, is represented using
solid arrows. Both a component R requesting information from a component S and this
sending it back, and component S commanding component R by sending information are
represented by an arrow linking S to R. This form of information flow occur both inside
xLM subsystem and, through an xLM API element, in between xLM components and other
components of LEACTIVEMATH outside the xLM subsystem.

• Information flow via asynchronous communication, as event publication, is represented us-
ing dashed arrows, while LEACTIVEMATH components that implement the event publica-
tion framework are depicted as square boxes. A local xLM Event Manager (xEM) is respon-
sible for listening to events coming both from inside xLM and from the rest of LEACTIVE-
MATH, and for publishing the events either locally to each xLM component’s listener or to
the LEACTIVEMATH Event Manager (EM).

This communication architecture provides all LEACTIVEMATH components with a single front-
end to xLM and its components, the xLM Manager. The rationale behind this feature is to provide
xLM with a single connection point between xLM and the rest of LEACTIVEMATH, so that xLM
remains as autonomous as possible, even when running as part of LEACTIVEMATH. Some im-
portant consequences of this design are the following:

• Besides information specific to the subject domain, as provided by the Domain Knowledge
subsystem (DK), and information gathered through OLM GUI, all remaining information
coming to xLM and used to update both situation and learner models is received through
asynchronous communication as events.

• Since event flow inside xLM is controlled by the xLM Manager, it can be made to ensure that
specific communication constraints specified in the logical architecture of xLM (section 4.1)
are met. That is the case, in particular, of the constraint that every event used to update a
learner model should reach and be stored in the learner history.

• The xLM subsystem can define local events, only relevant to its components, which can be
distributed locally but are not visible outside xLM.

• Any event published by one of the xLM components (e.g. new evidence for belief revision
from the OLM) is treated locally and immediately (e.g. storage of the event in the LH and
revision of beliefs by LM). This feature could be a minor optimisation if xLM runs on the
same JAVA virtual machine as the system that makes use of its services (as is the case of
LEACTIVEMATH), but it would be very important in other cases; for example, in cases xLM
where running as an independent web service.

From a more implementational point of view, the xLM manager introduced in Figure 4.2 servers
three purposes:

(a) as a facade object for xLM API,
(b) as a publisher of local events inside xLM and
(c) as a forwarder of public events in between xLM and the rest of LEACTIVEMATH.

As a facade object, the xLM Manager is configurable as a LEACTIVEMATH component that cre-
ates instances of each xLM component and holds references to them. As a local publisher and
forwarder, the xLM Manager subscribes itself to all learner-related events at the central LEAC-
TIVEMATH Event Manager, hence all xLM components subscribe as listeners to the former in-
stead of subscribing to the latter. Later on, the xLM Manager forwards all incoming events from
the rest of LEACTIVEMATH to each component that has subscribed to it. The xLM Manager is also
the place where each xLM component publish their own local and public events. Local events are
published in the same way as public events, but they are not forwarded to the LEACTIVEMATH
Event Manager and hence are not visible outside xLM.
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Figure 4.2: Communication architecture for the Extended Learner Model subsystem of LEACTIVE-
MATH.
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4.3 The Learner History

The Learner History (LH) is the part of the extended Learner Model (xLM) responsible for stor-
ing events related to the learner that possibly affect the state of the Learner Model, Open Learner
Model or the Situation Model. It gets notified of such events by the components in which they
occur, e.g. by the exercise subsystem, it stores them, and it propagates them to the relevant com-
ponents, e.g. to the Learner Model. Such propagation makes sure that all updates and modifica-
tions in the OLM, LM or SM are based on the same data, and thereby helps keeping data in the
xLM consistent.

The LH will support queries in the form of filters, which can be used to set constraints on event
attributes. It will also offer a few predefined query-methods for queries that are frequently used,
e.g. whether a learning item has already been seen by the learner.

The Learner History (LH) may affect the:

• Learner Model (LM)

• Situation Model (SM)

• Open Learner Model (OLM)

• Dialogue Manager (DM)

• Tutorial Component (TC)

Figure 4.3: LH as Central Information Entry Point

Communication with the Learner History will be possible in two ways:

• Event posting for asynchronous communication.LEACTIVEMATH will offer an event frame-
work for components that want to be notified of interesting events that occur in other
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components or services. In this framework, components can choose to subscribe to events
that other components publish. The LH will subscribe to several components that track the
learner’s actions, thus building up a history of learner’s actions (Requirement 5.3).

• Method calls via a traditional application interface (API) for synchronous communication
with the Learner History. The LH will expose the query methods in this way.

The LH is the central entry point for information about the learner’s actions for xLM components
(Fig. 4.3). This means that every learner action that is interesting to the xLM is stored in the
Learner History before it is relayed to the other xLM components. The procedure ensures that
every inference made in the xLM, e.g., the update of a belief in the LM, is justifiable by the
learner’s actions that are recorded in the LH. (Requirement 5.4)

4.3.1 Learner History Input

Only events will be used to convey input to the LH. As the LH is the single source of input to
the xLM, this will allow for a loose coupling between xLM and other components. When the
LH gets an event, it will store it in its underlying database and notify subscribed components.
This event will contain the (unique) identifier assigned to the stored information. The other xLM
components can therefore tag their inference steps directly with the event’s ID to justify them.
We believe that the set of events listed in Tables 4.1, 4.2, 4.3, 4.4 and 4.5 offers a good coverage of
relevant learner/system-interactions. However, this set of events can easily be modified later on.
The current list of events listened by xLM can be found in Appendix B.

4.3.2 Learner History Output

The LH will propagate all information it gets to the registered subcomponents of the xLM,
thereby removing the need of these components constantly querying the LH for new events.
Furthermore, the LH will offer queries via methods supporting the use of filters that set con-
straints on values in the columns in the LH’s underlying database. For most of the columns
the constraint will be an equality constraint. For some exceptions, however, equality will not be
enough, e.g. for the timestamp value. A list of these special constraints can be found in Table 4.6.
The complete interface contains the following methods:

A method needed at least by the Tutorial Component is to check whether a given learner has
already seen a given item.

boolean alreadySeen(String learnerId, String itemId) returns true if the learner has al-
ready seen the given item, false otherwise.

As some queries might return a large list of Events, we introduce filters in order to restrict the
results. Filter objects are sets of properties that are related to the columns used in the storage
database. Examples of properties include:

• type (= event Type)

• itemId

• bookId

• maxSuccess

The following methods can be used to query the history:
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• int getNumEntries(String learnerId, List<Filter> includeFilter,
List<Filter> excludeFilter)) returns the number of stored events that match the in-
cludeFilter but do not match the exclude Filter.

• List getHistoryEntries(String learnerId, List<Filter> includeFilter, List<Filter>
excludeFilter, int startIndex, int maxNum) returns a List of maxNum events for the
given learner that match the includeFilters but do not match the excludeFilters, start-
ing at the index startIndex of the full result list.

The following method can be used to retrieve stored events in the LH by using identifiers. This
is useful for justifying the current state of the LM.

Event fetchEvent(String id) returns the event with the specified ID.

4.3.3 Using Filters to Query the LH

We list a few anticipated usages of filters to query the LH to give a feeling what the queries will
look like.

• Query: "All exercises solved at least to 50 percent"

– IncludeFilter: type → Exercise, minSuccess → 0.5

– ExcludeFilter: ∅

• "All exercises solved at most to 50 percent"

– IncludeFilter: type → Exercise

– ExcludeFilter: minSuccess → 0.50

• "All actions on which the student spent more than 5 minutes (300 s.)"

– IncludeFilter: minDuration → 300

– ExcludeFilter: ∅

User Administration
Event Name Description Additional Parameters
UserLoggedIn User logged in
UserLoggedOut User Logged out
UserCreated User has registered to the system
UserRemoved User has ’left’ the system

Table 4.1: LH input events: User Administration Events

4.4 The Learner Model

This section gives a detailed description of the functionality, internal structure and content of the
Learner Model. Each of the dimensions used to organise the representation of the learner’s states
and dispositions, as presented in section 2.4, are described here in detail. An overview is also
given of the sources of evidence used to update the set of beliefs that conform a learner model,
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User Navigation
Event Name Description Additional Parameters
PagePresented User has been presented a page Reference to page

Duration
ItemPresented User has been presented an item Reference to item

Estimate of duration
DictSearched User has searched the dictionary Search query
UserBookPlanned User has requested a course Reference to course

Goals and paramaters
UserBookRemoved User has deleted a course Reference to course

Table 4.2: LH input Events: Navigation Events

Exercise and Dialogue
Event Name Description Additional Parameters
ExerciseFinished User finished an Exercise State: Abort, Timeout...

Overall Rating
Reference to exercise

ExerciseStep User made an exercise action Action description
Reference to exercise
Metadata of the exercise step

Table 4.3: LH input Events: NL and Exercise Events

Open Learner Model
Event Name Description Additional Parameters
olmEvent Interaction occurred in the OLM Learner Id

Interaction Topic

Table 4.4: LH input Events: OLM Events

System Actions
Event Name Description Additional Parameters
BeliefChanged LM updated a belief Belief Topic

New Value
Old Value

UserPropertyChanged LM changed a property What property
Old Value
New Value

StateChanged SM changed affective state What state
Old Value
New Value

Table 4.5: LH input Events: System Events
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Special Constraints
minSuccess filters out lines with success < minSuccess
minTimestamp filters out entries that occured before minTimestamp
minDuration filters out entries with duration < minDuration
maxSuccess filters out lines with success > minSuccess
maxTimestamp filters out entries that occured after maxTimestamp
maxDuration filters out entries with duration > maxDuration

Table 4.6: Special Filter Constraints

as well as indications of any outstanding issues, the alternatives envisaged and the estimated
schedule for resolving them.

Then the nature of the beliefs in the Learner Model is presented, as well as the mechanism used
for updating the model based on external and internal evidence.

This section will be concluded by some considerations about the computational complexity of
the model.

4.4.1 Functionality

In the architecture of the Extended Learner Model (section 4.1) the Learner Model (LM) compo-
nent acts as a client of the Domain Knowledge Subsystem (DK) and the Learner History, whilst
it acts as a server of the Learner History, the Open Learner Model (OLM), the Situation Model
(SM) and the Tutorial Subsystem (TS). This means, in particular, that changes to LM negotiated
by OLM have to be sent to LM via LH. In this way, any belief stored in LM is justifiable in terms
of information stored in LH.

The approach taken to specify the functionality of LM is based on use cases, which, roughly speak-
ing, are descriptions of how LM interacts with other components of LEACTIVEMATH under dif-
ferent circumstances. Five use cases are described here:

1. creating a learner model,
2. updating a learner model on-line,
3. updating a learner model off-line,
4. exposing a learner model in full, and
5. exposing details of a learner model.

They embody the classic create, update and select operations in databases, which also apply to
learner models.

4.4.1.1 Creating a Learner Model

It is good design, and increases the flexibility of LM, to keep the definition of the structure of the
domain in DK, where knowledge about the subject domain is kept, and to retrieve it (if necessary)
when creating a new learner model.

Description

1. LM gets a request from a component.

• Learner identifier
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Figure 4.4: Use Case for creating a Learner Model

• Preferences and other traits

2. LM sends a request to DK.

3. LM gets a response from DK.

• Domain description.

(a) LM initialises the model for the given learner

4. LM confirms model creation

Claims

Claim 4.4.1 The definition of the structure of the domain is kept in DK, and it is retrieved by LM (if
necessary) when creating a new learner model.

Supports a better design of both DK and LM, and increases the flexibility of LM to be applied to
more than one domain.

Because the need to share the definition of the structure of the domain knowledge between DK
and LM — developed by distinct teams in the project — encourages the production of a cleaner
definition. If the organisation and encoding of the definition is based on standards, then the same
mechanisms can be used by LM to build learner models for other domains.

Check rule(s) are

1. the existence of a specification for the organisation and encoding of definitions of domain
structure (DSD’s),

2. the existence of a conforming DSD for LEACTIVEMATH’s domain,
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3. the existence of suitable methods in DK (and LM, if necessary) for recovering (getting) a
DSD, and

4. the verification that changes in LEACTIVEMATH DSD produces consistent changes in new
learner models.

Issue(s) are, among others,

1. the selection of a good format for encoding DSD’s,

2. dealing with interactions between domain-independent and domain-dependent sections in
LM,

3. managing changes in LEACTIVEMATH DSD once the system is deployed (e.g. keeping dif-
ferent versions of it).

4.4.1.2 On-line Updating of a Learner Model

Continuous updating of beliefs in a learner model feeds from, and it is triggered by, information
about new events made available by LH. However, it may be necessary to complement this infor-
mation with further information about the learning objects a learner has been interacting with,
and this would need to be requested from DK by the LM.

DK

2.Requests  
metadata

3.Sends metadata

LM

LH

1.Sends message of 
event(s)

3.1.Updates beliefs 
accordingly

Figure 4.5: Use case for updating a learner model on-line.

Description

1. LM gets a message from LH.

• Learner identifier

• Description of event

2. LM sends request to DK.
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• Learning object identifiers

3. LM gets a response from DK.

• Metadata

(a) LM updates its beliefs accordingly.

Claims

Claim 4.4.2 Continuous updating of beliefs in a learner model feeds only from information on new events
made available by LH, complemented with metadata of learning objects made available by DK.

Supports consistency of beliefs in LM with information in LH and DK.

Because beliefs in LM are calculated exclusively from such information.

Check rule(s) is the existence of an updating algorithm which is sound, predictable, plausible
and implemented correctly.

Issue(s) relate to LH capacity of keeping all sorts of information which are necessary for sup-
porting a useful and interesting LM.

Claim 4.4.3 Continuous updating of beliefs in a learner model is triggered by information on new events
made available by LH.

Supports dynamic updating of a learner model as the learner interacts with LEACTIVEMATH.

Because LM reacts to new events registered in LH (e.g. learner actions, DM utterances, OLM
negotiations) by updating beliefs accordingly.

Check rule(s) is the implementation of a mechanism allowing LH to initiate and keep sending
information to LM, and corresponding mechanisms in LM to receive such information and act in
consequence.

Issue(s) concern the performance of the supporting mechanisms, which need to keep pace with
the demands of intelligent adaptation to learner needs.

Claim 4.4.4 LM is able to request information (metadata) about learning objects that have provided the
context for events registered in LM.

Supports better understanding of events.

Because contextual information is crucial for proper interpretation of events such as learner ac-
tions.

Check rule(s) are

1. the presence, in the description of every event, of information about the learning objects that
provided its context;

2. the existence of mechanisms in LM and DK for recovering metadata of well identified learn-
ing objects.

Issue(s) are, on one hand,

1. the provision of sufficient metadata information for learning objects, so that a good picture
of the context can be retrieved; on the other hand,

2. metadata information may not be sufficient for obtaining a good picture of the context in
which an event occur, hence other sources of information may be necessary — such as events
providing contextual information, and LM internal contextual information.
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4.4.1.3 Off-line Updating of a Learner Model

There are situations in which LM may need to take the initiative to update a learner model. For
example, LM may need to be synchronized after some maintenance of LH; there may be some
events to which LM does not react immediately but only after a critical amount of them have
been accumulated in LH, etc.

In this situations, LM will initiate the process by requesting from LH all events matching a given
pattern. Once the set of events is received by LM, the process will continue as in the previous use
case (section 4.4.1.2).

LM

LH

1.Requests 
information

4.1.Updates beliefs 
accordingly

2.Sends information

DK

3.Requests  
metadata

4.Sends metadata

Figure 4.6: Use Case for updating a Learner Model off-line

Description

1. LM request information from LH.

• Learner identifier

• Filtering specification

2. LM gets a response from LH.

• Learner identifier

• List of events

3. LM sends request to DK.

• Learning object identifiers

4. LM gets a response from DK.

• Metadata

(a) LM updates its beliefs accordingly

©LEACTIVEMATH Consortium 2005 Page 49 of 133



Deliverable D10
Student Model Specification

LEACTIVEMATH (IST-507826)

Claims

Claim 4.4.5 In some situations, LM can take the initiative to update a learner model, and initiate the
process by requesting from LH all events matching a given pattern.

Supports flexibility in the process of updating the learner model.

Because in this way LM may reconsider evidence stored in LH, delay the evaluation of events
until some criterion is met, or react to indirect requests from OLM, among other possibilities.

Check rule(s) are

1. the provision in LEACTIVEMATH of a representation format for event patterns,

2. the existence of suitable interface methods in LH, and in LM if necessary, which take an
event pattern as input and produce the set of all events matching that pattern, and

3. the existence of mechanisms in LM for building such patterns and processing the resulting
events.

Issue(s) are the characteristics of the pattern matching facilities provided by LH, which should
be easy to use, flexible enough to accommodate interesting behaviour from LM, and efficient
(given the number of events that may be stored in LH at one time).

4.4.1.4 Fully exposing a Learner Model

The full content of a learner model may be needed by OLM at the beginning of an interaction
with a learner (e.g. to present the model to the learner). Other components of LEACTIVEMATH—
such as SM, DM and TC — may also benefit from getting access to a whole learner model. Other
possible use is for exporting a learner model (e.g. to be used in another instance of LEACTIVE-
MATH).

LM

OLM, SM, DM or TC

1.Sends request for 
learner model

2.Sends full learner 
model

Figure 4.7: Use Case for exposing a Learner Model in full

Description

1. LM gets initial request from OLM, SM, DM or TC.

• Learner identifier

2. LM answers to OLM or SM.

• Complete learner model.
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Claims

Claim 4.4.6 LM is able to provide a whole learner model on demand.

Supports 1. other components of LEACTIVEMATH, such as OLM, to have tailored access to
(the public part of) learner models, and

2. a cleaner design of LM.

Because 1. each component can implement a local access mechanism tailored to its own needs
(e.g. for a graphical display of the learner model), and

2. LM behaves more like a “glass box” than a “black box”.

Check rule(s) are

1. the existence of a specification for the organisation and encoding of sharable representations
of learner models,

2. the existence of a suitable method in LM (and in other components of LEACTIVEMATH, if
necessary) for producing a sharable representation of a learner model, and

3. the verification that learner models and their sharable representations are consistent.

Issue(s) concern mainly to the selection of a good format for encoding sharable representations
of learner models.

4.4.1.5 Partial Exposition of a Learner Model

Depending on the belief updating algorithm employed by LM, a single event may trigger changes
to several beliefs in a learner model, many of them not relevant to the next decision made by each
component in LEACTIVEMATH. Hence, during a learning session and as a learner model evolves,
access to specific beliefs in it is more convenient than requesting complete copies of it.

LM

OLM, SM, DM or TC

1.Sends request for 
belief on topic(s)

2.Sends belief(s) on 
topic(s)

Figure 4.8: Use Case for exposing details of a Learner Model

Description

1. LM gets a request from OLM, SM, DM or TC.

• Learner identifier
• Topic identifier(s).

2. LM answers.

• Belief(s) on topic(s)
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Claims

Claim 4.4.7 LM provides access to individual beliefs in learner models, given learner and belief identifiers.

Supports adaptation to learner needs through easy access to individual beliefs about the learner
by LEACTIVEMATH components other than LM.

Because each component can request the value for each belief directly relevant to its decision
making.

Check rule(s) is the existence of an LM interface method implementing this feature.

Issue(s) relate to how other LEACTIVEMATH components may get to know the distinct beliefs in
a learner model. One possibility is for each component recovering first the whole model (see sec-
tion 4.4.1.4), which should include an identifier for each belief. Another possibility is to publish
all belief identifiers in a suitable way.

4.4.2 The Dimensions

This section gives a detailed description of each dimension used to organise the representation
of the learner’s states and dispositions, as presented in section 2.4

4.4.2.1 Subject Domain

The subject domain is not a static map that can be loaded once for all in the Learner Model. This
is due to the nature of LEACTIVEMATH and its dynamic and evolutive content-based approach.
The domain topics, i.e. the individual concepts of the domain on which the modelling process will
be based, have to be generated on the fly, as the learner is presented with exercises, examples,
etc. Their identification relies on OMDOC, the language used for representing – and marking –
content in LEACTIVEMATH.

There is two types of knowledge objects in OMDOC (see Kohlhase (2005); LeActiveMath Partners
(2004d)): concepts (i.e. symbols, theorems, axioms, definition) which are the principal targets of
learning and satellites (i.e. examples, exercises, introduction text, etc.) which are used to support
the learning of the concepts. Concepts and satellites are inter-connected by typed relations such
as f or, requires, is_basis_ f or, etc.

As target for beliefs, the Learner Model is only considering the knowledge objects at their most
abstract level. This is to ensure that evidence coming from the learner’s interaction with exercises
(i.e. at the content level) is accumulated and generalised at the domain level.

The figure 4.9 illustrates the structure of an authored content, arbitrarily reorganised in order to
emphasise the distinction between the "abstract" domain (i.e. a context-independent description
of the topics of learning) and the "concrete" contents (i.e. the devices used to formalise, organise
and present these topics to the learner).

The central part of the figure (the deriv_domain group) consists in domain topics in the context
of Differential Calculus: "Chain Rule", "Funtions", "Curve", "Slope", etc. They are connected
by associations in order to specify their structural dependence, e.g. the "Chain Rule" is a kind
of "Rules for Differentiation", the "Slope" relies on the notion of "Curve", etc. On the basis of
this formal description of the "domain", authors can introduce contents (such as in the groups
derivrules, derivnumerical, etc.) by defining theorems, axioms, examples, exercises, etc. They are
related to the topic(s) they present (e.g. the theorem X is for the "Chain Rule", the exercise Y is for
the "Product Rule") and relations can also be used to express pedagogical dependence (e.g. the
exercise Y requires "Polynomial Functions" as prior knowledge).
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Figure 4.9: Extracting the domain topics from the content presented to the learner.

Accumulating evidence solely at the domain topics level not mean that information related to
interaction with satellites (e.g. learner’s performance in an exercise, learner reading an introduc-
tion) are lost, as they are individually interpreted (e.g. performance evaluation is given, time
spent on a text is given) and stored in the Learner History.

Source of Evidence

• Each time the learner accesses a piece of content, all the domain topics related directly (e.g.
the symbols supported by this content) or indirectly (e.g. all symbols connected to the
content’s symbols) to the content are added to the Learner Model, if they are not already
present.

Outstanding Issues

• Finding a match between the "domain topics" of the Learner Model and the "knowledge
objects" of the content has been a long running issue. The OMDOC symbols are the ob-
vious choice for the abstract domain topics of the Learner Model but they lack relations
between themselves to express connectivity (e.g. "chain rule" is part of "derivation rules")
and, hence, forbid propagation of evidence by the Learner Model. On the other hand, OM-
DOC ensures relations between symbols by the way of concepts like axioms or theorems
(e.g. using an axiom to signify the existence of a relation between the "slope of the tangent
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at a point" and the "derivative at a point") but introducing them in the Learner Model com-
promises the uniqueness of the abstract domain topics (e.g. the previous axiom could be
represented as well by a theorem – with its formal proof – targeting University students).
Moreover, representing such relations by symbols on which theorems and axioms could de-
pend presents some obvious conceptual inconsistencies. The alternatives we are currently
investigating are:

1. Introduction in OMDOC of extra types of knowledge objects for representing – at ab-
stract level – the topics and associations that are the targets of learning (i.e. supported
by pieces of content like theorems, exercises, etc.). This is the option illustrated in fig-
ure 4.9 and is the preferred alternative but still need a consensus within the project
as it has implication beyond the Learner Model (i.e. extending OMDOC, slightly re-
authoring parts of the content, collaboratively building the domain map).

2. Using only symbols and ensuring that every OMDOC concepts (theorems, axioms, ...)
have a top-level symbol to which they refer directly. This is a short-term solution that
can be immediately implemented but gives to the OMDOC symbols a semantic that
is not consensual. Moreover, pedagogically important relations cannot be explicitly
represented.

3. Using both OMDOC symbols and concepts for the Learner Model’s domain topics
and relying on an assumed consistency of the course generation to avoid duplication
of concepts in the LM. By this approach, both topics and association (i.e. by way of
theorems and axioms) are represented in the Learner Model but a deliberate care has
to be given when authoring the content so that two similar objects are properly dealt
with in the Learner Model (like for example, in figure 4.9, the theorem and the axiom
in theory derivgraphical, both defining the relation between the derivative at a point
and the slope of a tangent at a point but for different public).

The solution 1 is the approach preferred by WP4; a decision will be made and implemented
by month 18 .

4.4.2.2 Mathematical Competencies

The mathematical competencies represent the cognitive abilities of learners to deal with the learn-
ing material presented to them. The competency framework used in LEACTIVEMATH arise the
current international discussion about standards and assessments in mathematics education, led
by PISA and NCTM (see for example Niss (2002); Klieme et al. (2004)). They are currently used
by WP6 a methodology to develop content.

The following description of the mathematical competencies used by the Learner Model is ex-
tracted from LeActiveMath Partners (2004d):

• Think mathematically: includes the ability to pose questions that are characteristic for math-
ematics ("Are there ... ?", "How does... change?", "Are there exceptions?"), understand
and handle the scope and limitations of a given concept, make assumptions (e.g. ex-
tend the scope by changing conditions, generalize or specify, with reasons), distinguish
between different kinds of mathematical statements (e.g. conditional assertions, proposi-
tional logic)

• Argue mathematically: includes the ability to develop and assess chains of arguments (ex-
planations, reasons,proofs), know what a mathematical proof is and what not, describe
solutions and give reasons for their correctness or incorrectness, uncover the basic ideas
in a given line of arguments, understand reasoning and proof as fundamental aspects of
mathematics
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Represent Language
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Tools

Figure 4.10: The mathematical competencies supported by the Learner Model.

• Model mathematically: includes the ability to identify, pose and specify problems, self-consti-
tute problems, monitor and reflect on the process of problem solving, endue strategies /
heuristics, solve different kinds of problems (with various contexts outside of mathemat-
ics, open-ended exercises)

• Solve problem mathematically: includes the ability to translate special areas and contents
into mathematical terms, work in the model, interpret and verify the results in the situa-
tional context, point out the difference between the situation and the model

• Use mathematical representations: includes the ability to understand and utilize (decode,
interpret, distinguish between) different sorts of representation (e.g., diagrams and ta-
bles) of mathematical objects, phenomena, and situations, find relations between different
kinds of representation, choose the appropriate representation for the special purpose

• Deal with symbolic and formal elements of mathematics: includes the ability to use param-
eters, terms, equations and functions to model and interpret, translate from symbolic and
formal language into natural language and the other way round, decode and interpret
symbolic and formal mathematical language and understand its relations to natural lan-
guage

• Communicate: includes the ability to explain solutions, use a special terminology„ work in
groups, including to explain at the adequate level, understand and verify mathematical
statements of others

• Usage of tools and aids: includes the ability to know about the existence of various tools and
aids for mathematical activities, and their range and limitations, to reflectively use such
tools and aids

Source of Evidence

• All examples and exercises in the content contain a metadata specifying which the com-
petency (or competencies) they address or train, as well as the competency level a learner
is assumed to have in order to successfully perform (see figure 4.15 for an extract of two
exercises authored with OMDOC, where the metadata <competency value="???"/> and
<competencylevel value="???"/> are specified accordingly). Based on the performance
in the content and on its context (e.g. difficulty of the exercise), evidence about the com-
petencies related to this exercise are accumulated to update the beliefs on the appropriate
topics (section 4.4.4 for a description of the update mechanism).
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• Every step of an interactive exercise – see LeActiveMath Partners (2004a) – could also con-
tain metadata specifying the competency associated with that particular step (assumed to
be one of the competencies of the exercise).

• In the Open Learner Model, the learner could investigate and challenge the various beliefs
the Learner Model hold about his/her competencies. These interactive diagnoses are also
sources of evidence taken into consideration when updating beliefs regarding competen-
cies

Outstanding Issues

• The mathematical competencies being the core of the Learner Model, it is important that
their diagnosis is as accurate and discriminate as possible. We are currently investigating
the possibility of deepening the competencies map by adding "sub-competencies". This
extra level of information has never been considered before by the project partners and,
consequently, need a careful analysis and operationalisation. A first version of this extra-
level has been produced, based on an ad hoc review of the content currently authored for
LEACTIVEMATH. This initial version still need to be amended and extended by taking into
account requirements coming from other parts of the project (in particular the Dialogue
Manager and the Domain Reasoner).

However, this issue is not a problem for the specification or the implementation of the
Learner Model: evidence supporting competencies can still be accumulated and belief
about competencies updated. A deeper specification of the competency dimension will
only improve the reliability of the modelling process. This issue has to be seen as part of
the iterative improvement of the xLM.

A decision will be made and implemented by month 18 .

4.4.2.3 Motivation and Affect

As explained in section 2.4, the motivation dimension and the affect dimension of the Learner
Model stands at the same level. This is why, in the rest of the document, both dimensions are
often referred to altogether, as "motivation and affect". This does not mean that they represent the
same dimension of the learner’s characteristics: they cannot be combined (i.e. there are beliefs
about the learner motivation AND beliefs about the learner’s affect) and are diagnosed from
different and independent sources of evidence.

The current model of motivation used by the Learner Model is based on some of the situational
factors used by the Situation Model (see section 4.5), the difference being on the scope and perti-
nence of the information stored. Whereas the Situation Model considers only a very local, time-
specific situation in order to give advices, the Learner Model on the other hand accumulates the
factors discriminant to this situation in order to establish a long-term portrait of the learner’s
motivational state. Three motivational factors are actually considered:

• Effort: an estimate of the amount of work done by the student on the just completed task.

• Confidence: the level of student’s positive self-belief in relation to their ability to tackle and
to solve a given problem.

• Interest: the level of student’s positive attitude towards the just completed task.
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Figure 4.11: The motivational and affective factors supported by the Learner Model.

The OCC model Ortony et al. (1988), despite is recognised over-simplification, is one of the most
common model used for categorising emotions and building emotional agents. Its operationali-
sation - even partial - in many system (learning or not) gives us a reasonable ground for explor-
ing the issue of the affective state of learners. The rational being to highlight the feasibility of the
Learner Model, not to cover every emotions identified in the OCC model, we decided to select
only one emotion for each of the perception branches of the model (i.e. events, agents and object).
They are :

• Liking/disliking: the level of attraction arising from the current object of attention of the learner.

• Pride/shame: the level of attribution arising form the current actions of the learner.

• Satisfaction/disapointment: the level of prospect arising from the consequences for the learner
of the current events.

In addition, and more specifically related to LEACTIVEMATH, discussion among the project part-
ners have led us to consider looking at the issue of Math anxiety Richardson and Suinn (1972); To-
bias (1995). Together with Mathematics self-concept, which refers to perceptions of personal ability
to learn and perform tasks in mathematics Reyes (1984), these are the two dimensions of the
learners’ (negative) attitude toward mathematics that have been the focus of numerous research
on mathematical disabilities and have an obvious impact on the.

• Math anxiety: the feelings of tension that interfere with the manipulation of mathematical
numbers and the solving of mathematical problems in a wide variety of ordinary life
and academic situations.

Source of Evidence

• The motivational factors, being a long-term accumulation of some of the situational factors
considered by the SM, are evaluated by the Situation Diagnosis Agent (see section 4.5)
when an interactive exercise is performed by the learner.

• Affective factors will be provided directly by the learner, using the self-report tool
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• In the Open Learner Model, the learner could investigate and challenge the various be-
liefs the Learner Model hold about his/her affective and motivation states. Each of these
challenges is another source of evidence for updating the relevant beliefs.

Outstanding Issues

• The studies currently ran in order to identify the situational factors and their source of
evidence (see section 2.4) are not totally over and analysed. It is therefore expected that they
may change in the near future and the motivation dimension of the Learner Model will be
redefined accordingly. This will have only a minor impact on LEACTIVEMATH as a whole,
as it is expected that most of the component requiring information about the learner’s state
will inquire the Learner Model about the dimension as a whole, e.g. motivation, whatever
its internal breakdown.

Nevertheless, a final decision about the motivational factors to represent in the Learner
Model will be made and implemented by month 18 .

• One assumption that still hold at the time of writing is that direct evidence for affective
factors will be gathered exclusively using self-reports (i.e. by the self-report tool and by
the OLM). This may change, as part of the iterative improvement of the xLM, if further
diagnosis mechanisms are suggested and operationalised.

4.4.2.4 Metacognition

Flavell (1976) defined metacognition as follows: "In any kind of cognitive transaction with the
human or non-human environment, a variety of information processing activities may go on.
Metacognition refers, among other things, to the active monitoring and consequent regulation
and orchestration of these processes in relation to the cognitive objects or data on which they
bear, usually in service of some concrete goal or objective." Hacker (1998) offered a more com-
prehensive definition of metacognition, to include the knowledge of one’s own cognitive and
affective processes and states as well as the ability to consciously and deliberately monitor and
regulate those processes and states.

Metacognition

Metacognition

Monitoring Control

Figure 4.12: The metacognitive factors supported by the Learner Model.

Based on these definitions of metacognition, the Learner Model takes into account the following
two metacognitive abilities:

• Monitoring: The ability of the learner to actively becoming conscious of his/her own congitive
and affective processes and states.
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• Control: The ability of the learner to consciously and deliberately regulate these processes and
states.

The above definition of the factors implies a relation between them, as there cannot be any control
if there is no evidence of monitoring from the learner.

Source of Evidence

• The Open Learner Model will be the major source of evidence for the learner’s metacogni-
tive abilities. Investigation of the beliefs stored in the model and challenges of the judge-
ment made by the model are collected and generalised as evidence for monitoring. Patterns
of interaction identified between the use of the OLM and the content explored or performed
in LEACTIVEMATH are generalised as evidence for control.

• Some particular self-motivated interactions with LEACTIVEMATH, such as looking for a
term in the dictionary, could be also considered as evidence for monitoring.

4.4.2.5 Conceptual and Procedural Errors (CAPEs)

The Conceptual and Procedural Errors (CAPEs) is a broad category containing all buggy rules,
misconceptions, typical mistakes and common misunderstanding that the learner could be faced
with when learning.

LEACTIVEMATH being an e-learning environment, it does not support all the capabilities that
a more focused Intelligent Tutoring Systems (ITS) could do, notably for identifying and reme-
diating to CAPEs. Therefore, with the notable exception of the Domain Reasonner required by
the Dialogue Manager, the use of CAPEs in the current definition of the system is very limited.
Therefore, there is not yet a clear picture about what the Learner Model could represent about
influence of CAPEs on the learner’s abilities, or about what other component such as the Tu-
torial Component could do should such information be made available in the Learner Model.
This is clearly an investigation issue that will be addressed all along the project, rather than a
requirement used to unequivocally design the system.

As for the subject domain, the Learner Model does not contains any predefined map or definition
of the CAPEs 2: they are assumed to be defined by the authors in the same way content is. A
partial list of the CAPEs identified both from the content currently produced by WP6 and by
the studies ran by WP4 can be found in Appendix A. They still need to be reorganised in a
useful form (i.e. defining categories, generalising and specialising CAPEs when needed, etc.)
and published in a format that could be used by LEACTIVEMATH.

There is two ways the Learner Model is currently using the existence of CAPEs associated with
content:

1. By accumulating evidence about the occurrence of any CAPEs and about their eventual
settlement by deliberate effort by the learner.

2. By using the presence or not of CAPEs in a particular situation to refine the update of
beliefs. For example, we can imagine different treatment of updating beliefs if some CAPES
are systematically identified with the learner’s interaction with an exercise training this
competency. This approach assumes that the list of CAPEs available for the Learner Model
is organised according to a more focused taxonomy and that extra information used by the
update mechanism are specified.

2At least beyond any initial set required by non-authoring-based components such as the domain reasonner.
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Source of Evidence

• Individual steps of an interactive exercise reacting to an incorrect or unanticipated answer
from the learner could contain reference to relevant CAPEs (as well as defining the feedback
delivered to him/her). Such information will be sent to the Learner Model when (or if) that
step is triggered by the learner’s interaction.

Outstanding Issues

• The whole issue of handling CAPEs in LEACTIVEMATH is an ongoing question that will be
explored through the project lifetime. This fact does not affect the implementation of xLM.

4.4.3 The Beliefs

From the previous sections it should be now clear that the Learner Model is a collection of beliefs
about several inter-connected dimensions, whose ontologies are distinctly established. So let’s
now have a look at we we mean by "belief" and "accumulation of evidence".

4.4.3.1 Beliefs and Mathematical Competencies

Competencies and competency level is a perfect illustration of the significance of belief and accu-
mulation of evidence over time. In the context of assessment and content authoring, the compe-
tency framework is an holistic approach which relies on a whole sequence of content. But from a
learner modelling point of view, the emphasis is this time put on an individual piece of content
of these sequence. How can we unite both approach, justifying the Leaner Model usage of the
competency framework? By the accumulation of evidence.

When the learner’s performance on a piece of content is signaled to the Learner Model, we have
no way to know (apart from the beliefs already present in the model) how the learner fits in
that sequence. The only thing we can extract from this situation, based on the description of
the piece of content (e.g. which competencies it trains and which competency level the learner is
assumed to gain or enforce as a consequence of successfully dealing with it), the context of the
interaction (e.g. situational factors) and its outcomes (e.g. how well did the learner perform), is
new evidence about the current competency level of the learner. This new evidence is combined
with the existing one in order to refine the model of the learner. It is by this accumulation of
evidence over time that the model will gain in accuracy and reliability.

However, a belief is not merely evidence but an interpretation of it. A learner model, as explained
in section 2.1 is a theory that explains the evidence. Hence a belief on a dimension (e.g. a com-
petency) is the piece of the theory that explains the evidence accumulated in relation to that
particular dimension: what the Learner Model believes about the current level of the learner on
that dimension (e.g. current competency level). The theoretical background behind the repre-
sentation and management of beliefs in LM is the so called Dempster-Shafer Theory, which is a
generalisation of the Bayesian theory of subjective probabilities (Shafer, 1976). This means that a
belief on dimension d in LM contains a confidence interval [Cr(S), Pl(S)] for at least every propo-
sition or statement S of the form ‘the learner is at level l on dimension d’, where

(a) Cr(S) measures how certain LM is on the proposition S being true, while
(b) Pl(S) measures how much LM thinks the proposition does not contradicts the evidence (i.e.

the proposition is plausible).
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We call Cr(S) the certainty of LM on the proposition S being true and we call Pl(S) the plausibility
for the proposition S to be true, both of them with respect to the accumulated evidence. Actually,
Pl(S) = 1−Cr(¬S), where ¬S stands for the proposition ‘the learner is not at level l on dimension
d’. The difference Ig(S) = Pl(S)−Cr(S) measures the amount of ignorance of LM on the matter,
i.e. ignorance on whether the learner actually has level l on dimension d.

Example If S stands for ‘the learner has competency level III in mathematics’ then Cr(S) stands
for how much LM believes this is actually the case, given the amount and quality of the evidence
that support the statement S, while Pl(S) stands for how much LM beliefs that what S states is
a plausible fact, given the evidence that stands against it—and the close world assumption: S
as to be either true or false, not both neither none. If, say, Cr(S) = 0.10 and Pl(S) = 0.95 this
could be phrased as ‘LM does not believes much that the learner is really at competency level III
in mathematics, yet it reckons that could be rather possible (since it have not got much evidence
against it)’.

Before getting into more details on DST formalism it is important to remember the semantics
of levels, as described in section 2.4. Since levels are to measure progress they are ordered in
a sequence l1, l2, . . . , ln reflecting the fact that if ‘a learner has attained level li’ then ‘the learner
has (also) attained level lj’ for all j < i. If Si denotes the former proposition and Sj denotes the
latter, then we have that everytime Si is true then Sj is true also. However, DST requires only
one of these propositions to be true at any given time, hence any proposition Si should be rather
interpreted as meaning that ‘the learner is at level li’ or, to be more explicit, that ‘the maximum
level the learner has attained is li’. In this way, if Si is true then Sj is false for any j 6= i .

A simple proposition of the form ‘the learner is at level l’ as can be represented by a set of levels
containing only l; i.e. the singleton {l}. Actually, the power of DST comes from working not only
with simple propositions as shown before but with composite disjuntive propositions of the form
‘the learner is at level li or lj or . . . ’ where the number of levels put together in the propositon goes
from one to the total of levels considered. As for simple propositions, disjuntive propositions can
be represented by the sets such as {li, lj, . . . }. Now, in the same way that Bayesian probabilistic
reasoning generalises on bivalent logical reasoning by introducing degrees of truth, DST gener-
alises Bayesian reasoning by introducing degrees of ignorance. The particular mechanism used
to accomplish this is still a distribution of probabilities, but this time not over the possible values
(levels in our case) of a variable but over sets of its possible values. This probability distribution
is called a mass function or basic probabilistic assignment (BPA), and it is a function

m : 2L → [0, 1]

where L is the set of all possible levels for a dimension, 2L is the power set of L (i.e. the set of
all possible sets of levels) and [0, 1] is the closed interval of all real numbers in between zero and
one, inclusive. A (normalised) mass function must also satisfy the equations

m(∅) = 0 and ∑
S⊆L

m(S) = 1,

which mean that some level must be the case (the probabilistic assignment to the empty set is
zero) and all possible levels are cover (the overall sum of the assignments is one).

The relationship between the mass function and the certainty and plausibility functions is given
by the equations

Cr(S) = ∑
A⊆S

m(A) and Pl(S) = ∑
A∩S 6=∅

m(A).

So we can now provide a more complete definition of a belief on dimension d in LM has the col-
lection of confidence interval [Cr(S), Pl(S)] for every subset S of the set L of all possible levels the
learner could be at on that dimension—i.e. where every subset stands for a disjuntive proposition
of the form ‘the learner is at level li or lj or. . . or lm on dimension d’.

©LEACTIVEMATH Consortium 2005 Page 61 of 133



Deliverable D10
Student Model Specification

LEACTIVEMATH (IST-507826)

Example If LM knows nothing about a learner’s mathematical competency then the best it can
do is to believe the learner is at some level on it. This can be achieved by making the mass
function equal to zero for all subsets of levels other than the set of all levels L = {I, II, III, IV}.
That is (see below, for a description of levels of mathematical competency),

m(L) = 1

while
m(S) = 0 for any other set S 6= L,

which leads to
[Cr(L), Pl(L)] = [1, 1]

while
[Cr(S), Pl(S)] = [0, 1] for any other set S 6= L.

In words,

• LM is certain that the learner is at some level, since Cr(L) = 1,
• has not idea of which level is because, in particular, Cr({l}) = 0 for all l ∈ L,
• and hence believes all of them are equally and “totally” plausible, since Pl({l}) = 1 for all

l ∈ L).

Now let assume the learner has completed very successfully a medium hard exercise that has
to do with mathematical competency at level II. This new evidence must be encoded as a basic
probabilistic assigment to be merged with the current belief LM has—see section 4.4.4 for details
of the updating mechanism. A possible definition for the mass function for the evidence is

m({II, III, IV}) = 0.75
m({I, II, III, IV}) = 0.25

m(S) = 0 for any other set S

Since the mass function for complete ignorance is the neutral element for the updating mecha-
nism, the mass function from the evidence will come the new mass function for the belief, given
a set of confidency intervals with the following characteristics:

• Cr({II, III, IV}) = 0.75,
• Cr({I, II, III, IV}) = 1,
• Cr(S) = 0 for any other set S,
• Pl({I) = 0.25 and
• Pl(S) = 1 for all other set S.

From the results it can be said that the translation given of the evidence as a mass function pro-
duces as main result a strong decrease in the plausibility of the learner being currently at level
I of mathematical competency, yet the evidence is not enough to be more accurate with respect
to which of the remaining levels of competency is the highest level currently attained by the
learner. It should be clear also that [Cr(L), Pl(L)] is always [1, 1], due to the fact that L is the set
of all possible levels of mathematical competency, and hence any other set of levels S is a subsets
of it.

4.4.3.2 Beliefs and Levels

Consequently, the definition of a belief about competency is as follow:

• Belief on Competency: A belief about a competency is a distribution over competency levels of
the certainty and plausibility of the learner being at those levels (see figure 4.13). The
definitions for the four competency levels to be used, as extracted from LeActiveMath
Partners (2004d), are as follows:
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• Level I: Computation at an elementary level. To achieve this competency level, stu-
dents have to do apply arithmetic knowledge (factual knowledge, schematic appli-
cable procedures). This level comprises knowledge learned by heart that is easy to
recall and can be applied directly in a standard situation. The problem which is
solved points to a certain standard form of mathematisation from the outset. Con-
ceptual modelling is not required.

• Level II: Simple conceptual solutions. The simplest forms of conceptual modelling
and solutions that include only a few steps are involved as well as the factual knowl-
edge. Either the task is to select the correct solution from several alternatives or the
student is provided with structural aids, graphical hints, etc. to develop her own
solution.

• Level III: Challenging multi-step-solutions. Students at this competency level are
able to perform more extensive operations, and are able to solve a problem with
several intermediate steps. Students are also able to deal with open-ended modelling
tasks that can be solved in various ways, but that require to find a solution of their
own. High level modelling on inner-mathematical connections can be asked for.

• Level IV: Complex processings (modelings, argumentations) Students, who solve
exercises of this final competency level successfully are able to work on open-ended
tasks, choose adequate models and construct models themselves where necessary.
Conceptual modelling at this highest level often includes mathematical justification
and proof as well as reflection on the modelling process itself.

The figure 4.13 illustrate the shape that a belief about a competency d could have. All the possible
sets of competency levels are represented along the horizontal axis. The set {I} represents the LM
confidence that the learner is at level I, whereas the set {I,II,III} represent the confidence that
the learner is somewhere between Level I and level III. Confidence is expressed in term of the
confidence interval described above, Cr(S) standing for certainty and Ig(S) for ignorance.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

{I} {II} {III} {IV} {I,II} {I,II,III} {II,III} {II,III,IV} {III,IV} {I,II,III,IV}

Ig(S)
Cr(S)

Figure 4.13: A belief as a distribution of certainty and ignorance on ranges of levels.

For consistency purpose, a similar approach is used for all beliefs about the principal dimensions
of the model.
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• Belief on Motivation: A belief about a motivational factor is a distribution over levels of motiva-
tion of the certainty and plausibility of the learner being at those levels. Similarly to the
competency levels, the four-level scale represent the degree of motivation the learner is
assumed to have, from low (Level I) to high (Level IV).

• Belief on Affect: A belief about an affective factor is a distribution over levels of affect of the
certainty and plausibility of the learner being at those levels. Similarly to the competency
levels, the four-level scale represent the degree of affective state the learner is assumed to
present, from low (Level I) to high (Level IV).

• Belief on metacognition: A belief about a metacognition ability is a distribution over levels of
metacognition of the certainty and plausibility of the learner being at those levels. Similarly
to the competency levels, the four-level scale represent the degree of affective state the
learner is assumed to present, from low (Level I) to high (Level IV).

The integration of CAPES in LEACTIVEMATH and the Extended Learner Model, as mentioned
before, being at a too early stage, we are currently excluding them from a similar approach. In
the current version of the LM, we are only considering if a particular Conceptual and Procedural
Error has been diagnosed or not in relation to a topic.

4.4.3.3 Structuring the Beliefs

The figure 4.14 illustrates graphically the structure of beliefs in the Learner Model and their access
from multiple viewpoints.

For example, the Learner Model can hold belief about the mathematical competency of the
learner on the chain rule (the node labelled "MT on CR") or about his/her the level of satisfac-
tion regarding the chain rule (node labelled AonCR) and regarding his/her level of mathematical
thinking on the chain rule (node labelled AonMTonCR).

When a component request information about the learner such as the Tutorial Component for
deciding which exercise to present next to the learner, specific query regarding these individual
beliefs can be expressed (e.g. "What is the learner’s level of Mathematical Thinking on the chain
rule?").

But more general requests can also be made, such as "What is the overall level of Mathematical
Thinking of the learner?" or "What is the overall level of satisfaction of the Learner?". In such
situation, the Learner Model gathers all beliefs concerned by the request and combines them un-
der the topic related to the question. Hence, topics like "Satisfaction", "Mathematical Thinking",
"Control", etc. have also beliefs associated with them, even if they are not gathered by direct
evidence but rather dynamically calculated by aggregating the relevant individual beliefs.

Every belief in the Learner Model can be uniquely identified by its "coordinates" in the four-
dimensions space implied by the model. This coordinate can be represented by the following
quadruplet,

< MetacogID, Motiv&AffectID, CompetencyID, TopicID >

where:

• MetacogID identifies one of the ability in the metacogition map, including its top-level di-
mension;

• Motiv&AffectID identifies one of the factors of either the motivation map or the affect map;
• CompetencyID identifies one of the competencies in the competency map;
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Figure 4.14: beliefs

• TopicID identifies one of the topics of the domain map.

Respecting the stack model (see figure 2.5), both individual and overall belief can be referenced
by this mean:

• <none, none, think, chain_rule> for the belief about the level of mathematical thinking
about the chain rule

• <none, motivation, none, chain_rule> for the belief about the level of motivation re-
garding the chain rule

• <none, satisfaction, solve, chain_rule> for the belief about the level satisfaction re-
garding the learner’s competency in solving mathematical problems with the chain rule

• etc.

The combination of beliefs raises the question of the scope of the query. When a question like
"What is the overall level of Satisfaction of the Learner?" is asked, an implicit parameter is which
domain topics have to be taken into account. And there is no obvious answer to this question,
as it merely depend on the context and on the motivation of the asker. For example, it could the
whole domain (e.g. differential calculus) or the current session (e.g. all the domain topics explorer
by the learner since ) or the current book (e.g. all topics included in the book currently explorer
by the learner), etc.

The learner Model provides a mechanism for dynamically defining such a context. Commonly
used definitions of the scope are provided for immediate reference (they are the example given
above: the session, the book or the whole domain). When querying the Learner Model about an
overall belief, a component such as the Tutorial Component could specify the scope of application
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of the combination, using the same coordinate system:

• <none, none, competency, domain> for the belief about the overall competency level of
the learner [as seen as over the whole domain]

• <none, none, think, domain> for the belief about the overall level of mathematical think-
ing of the learner [as seen as over the whole domain]

• <none, motivation, none, session> for the belief about the overall level of motivation of
the learner [as seen as over the current session]

• <none, satisfaction, solve, book> for the belief about the overall level of satisfaction
regarding the learner’s competency in solving mathematical problems [as seen as over all
exercises in the current book]

• etc.

For an implementation of this mechanism, see the API for the Learner Model in Appendix B.

4.4.3.4 Accessing the Beliefs

When querying the Learner Model for information about the state or characteristics of a learner,
several degrees of details are supported by the Learner Model to externalise its beliefs.

• Summary Belief: At the lowest level of detail, a single numerical value reflecting the dom-
inant level of the distribution. This could be used by any component needing a quick
overview of the belief. .

• Belief: The complete distribution across the levels (see figure 4.13) could be also retrieved.
This will give higher flexibility for a component, for example by making a decision based
on the lowest ignorance Ig(S) or the highest plausibility Pl(S).

• Belief Cluster: When querying about overall belief (e.g. "What is the learner’s overall math-
ematical thinking?"), instead of delivering a combined belief, the Learner Model could
instead return the full list of all beliefs clustered around the target of the query (e.g. all be-
liefs related to the competency Mathematical Thinking, whatever the domain topic they
applies, see figure 4.14).

• Evidence: At the highest level of detail, the Learner Model could return a belief (or a cluster
of belief) associated with all their evidence, i.e. all the events which interpretation and
accumulation led to the actual state of the belief. As such a list of evidence could be
extensive, a mechanism for organising them (e.g. in terms of strength or pertinence, in
chronological order, etc.) will be also provided (see section 4.6.2 about the Open Learner
Model).

4.4.3.5 Justifying the Beliefs

As the Learner Model update mechanism is based solely on the events stored in the Learner
History, it is always possible to retrieve the list of all interactions that have accumulated evidence
for reaching current state of the belief. Moreover, these events being chronological recorded, it
is also possible to reconstruct the state of every belief at an earlier stage. Therefore, all beliefs in
the Learner Model are explainable. This is a feature which is very useful for the Open Learner
Model, as it allows an argumentation with the learner about about why the OLM believes that
the learner’s state is such or such (and possibly refutation of the evidence).
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4.4.4 The Update Mechanism

Basically, the update mechanism could be roughly described as follow:

1. When an interaction between the learner and the system takes place, an event is stored in
the Learner History 3.

2. The Learner Model takes this event as a source of direct evidence and build a numerical
portrait of it, using a mass function as described in section 4.4.3.

3. The Learner Model proceeds to update all the beliefs related to this event, in light of the
built evidence.

4. Based on the maps representing the various dimensions of the model, the Learner Model
propagates this direct evidence in order to update all the beliefs connected to the source.

5. The Learner Model sends an event to the Learner History, notifying it (and hence all other
interested components) that an update has been made in the Learner Model

Storing an event Phase 1 of the process underlines again the central role of the LH in the
Extended Learner Model. The Learner Model does not have to watch every parts of the system
in order to pick up the relevant events: as well as acting as a diary (and a digest) of the learner’s
activity, the LH does precisely this for all sub-components of the XLM. But such a "bottleneck"
position of the LH also underlines the importance of the information stored with each event, to
allow the LM to reconstruct retrospectively the exact context in which the event took place (see
tables 4.1, 4.2, 4.3, 4.4 and 4.5 for a list of all events intercepted by the LH and their associated
attributes).

Building an evidence from this event On phase 2 of the process, the LM reconstruct the
context of the event in order to specify the nature of the evidence that has just been indicated. A
typical example of the reconstruction of the context is when an exercise has been finished by the
learner.

From the attributes of the event in the LH (see table 4.3), the LM is able to retrieve the identifier
of the exercise, the status of the exercise (e.g. completion), the overall rating of the performance
of the learner (evaluated by the Exercise Subsystem), the duration of the exercise. By consulting
MBase with the exercise identifier, the LM is able to retrieve the metadata specifying the exer-
cise (for example from the exercise fib_productderiv of figure 4.15), i.e. its difficulty (easy),
typical learning time (00:02:00), competencies (think and represent) and competency level
(simple_conceptual), etc. By using the relations between this exercise and the domain, the LM
finally determines the domain topic concerned by this event, i.e.product_rule 4.

The LM can now clearly states that this learner’s interaction with the system provides an evi-
dence about his/her level of competency in "Mathematical thinking" and "Using mathematical
representations", both in relation to the domain topic "Product rule". Using the coordinate nota-
tion introduce in section 4.4.3, they are:

B1 : < none, none, think, product_rule >

B2 : < none, none, represent, product_rule >

3It is worth mentioning again that not ALL LEACTIVEMATH events are stored in the LH but only the ones that have
a significance for the xLM.

4For the reasons mentioned in section 4.4.2.1, the metadata of exercises does not yet contains references to the domain
topics.
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The parameters of the evidence (i.e. the competency level, the rating of the learner’s performance,
the difficulty relativised by the exercise learning context versus the learner’s education level, the
comparison between the typical learning time and the performing time, etc.) are used to quantify
the numerical representation of the evidence.

Two basic sets of rules are used. The first one 4.1, in the case the learner has a low performance
related to the exercise, states that the LM believes that the learner’s level of competency Li is
lower or equal to the level Le specified in the exercise. The second set 4.2, in the case of the
learner’s high performance in the exercise, states on the contrary that his/her level of competency
is believed to be equal or higher to the exercise’s target.

m({L1, L2, . . . , Le}) = f
m({L1, L2, . . . , Ln}) = 1− f (4.1)

m({Le, Le+1, . . . , Ln}) = f
m({L1, L2, . . . , Ln}) = 1− f (4.2)

In both rules, the function f refers to the evaluation of the context on which the exercises took
place, i.e. how the different attributes such as difficulty, abstractness, etc. are taking into account
to provide a numerical quantification of the evidence. This is the key element of the whole update
mechanism.

In our example, knowing that the learner did succeed pretty well with the exercise fib_product-
deriv and the attributes of this interaction, one could expect the following evidence to be in-
ferred:

for B1 : m({II, III, IV}) = 0.85
m({I, II, III, IV}) = 0.15

for B2 : m({II, III, IV}) = 0.75
m({I, II, III, IV}) = 0.25

Updating the beliefs On phase 3, once the evidence have been quantified, the Learner Model
combines it with all the previously accumulated evidence in order to update the two beliefs (i.e.
mathematical thinking on the product rule and using mathematical representations on the prod-
uct rule). This is done by using the Dempster-Shafer Theory algorithm on the sets of evidence
represented as mass functions (see section 4.4.3).

Propagating the evidence On phase 4, the Learner Model used the topological knowledge
explicitly represented in the relevant maps to propagate the evidence on beliefs "similar" to the
target one. In our previous example for example, the domain map (see figure 4.9) is used to prop-
agate the evidence from product_rule to deriv_rules, using the association type member_of to
specify how much of the evidence applies to the parent topics This association types allows the
propagation mechanism to specify that the sibling topics (i.e.chain_rule) may not be concerned
by the propagation (or in a very weak way).

Notifying the LH Finally, on phase 5, the Learner Model send an event to the LH, stating that
beliefs about the learner have been updated. The attribute of this event could be used to pinpoint
which beliefs have been updated so that any component could immediately react if the update is
relevant to the current situation.

©LEACTIVEMATH Consortium 2005 Page 68 of 133



Deliverable D10
Student Model Specification

LEACTIVEMATH (IST-507826)

4.4.5 The Updater

The update mechanism of the Learner Model is a process that is not embedded in the model
itself but is centralised in an external agent, unimaginatively called the Updater. The Updater
is in charge of interpreting the result of a learner interaction (as stored in the Learner History),
retrieving the relevant beliefs (or building them if they are not in the current state of the model)
and updating them according to new sources of evidence.

This independence means that several versions of an update mechanism could be implemented
concurrently in the system. On one hand, different approach of numerical methods (such as
Bayesian nets, rules system, etc.) could be experimented, without an extensive overhauling of
the Learner Model. On another hand, it means that several versions of an update mechanism
could be used on the same scenario in order to compare the evolution of the Learner Model. In
both situation, this flexibility will be used to improve, from empirical studies, the reliability and
the accuracy of the Learner Model.

4.4.6 Outstanding Issues

• As mentioned above (section 4.4.3), DST requires disjoint levels as hypothesis. However,
the semantics of competency levels implies inclusion (e.g. if a learner has attained level IV,
he has also attained levels I, II and III). Our approach is not compromised by this situation,
since the valuation of evidence takes it into account by assigning positive plausibility only
to sets of consecutive levels (e.g. to {II, III, IV} but not to {II, IV}). The output of DST have
to conform with its input and any discrepancies will be used for monitoring problems in
the modelling process.

• DST assumes that all possible sources of evidence have to be combined simultaneously in
order to produce a new belief. In the LEACTIVEMATH context, evidence will come incre-
mentally along time, reflecting the sequence of learner interactions with the system. We are
exploring ways of building an iterative DST algorithm that would be able to combine the
current beliefs hold by LM, standing for all past evidences, with new sources of evidence.
Having such an algorithm would decrease the computational cost of updating the learner
models. This issue will be solved and implemented by month 27.

• The propagation of beliefs across the dimensions of the Learner Model is an important part
of the update mechanism and need to be improved. At the time of writing, it is unclear
how Dempster-Shafer Theory could be used for that purpose (extensions of DST for prop-
agation has been proposed but their computational complexity is an important question).
The current version of the propagation plans to use simple ad-hoc rules for propagating
the evidence to neighbour nodes in the maps, basically by increasing the probability of to-
tal ignorance (and introducing a threshold for controlling the depth of the process). For
example, if the evidence for the belief B1 <none,none,think,product_rule> is as follow:

B1 : m({II, III, IV}) = 0.85
m({I, II, III, IV}) = 0.15

then propagating this evidence to the belief B2 <none,none,think,deriv_rules>, both of
them associated in the domain map (see figure 4.9), could result in the following definition
of the mass function, to be accumulated with direct evidence for recomputing the belief B2:

B2 : m({II, III, IV}) = 0.85/2 = 0.425
m({I, II, III, IV}) = 1− 0.85/2 = 0.575
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References and implementations of extension of DST for propagation of beliefs are cur-
rently reviewed and, if judged applicable, a new version of the updater will be made avail-
able by month 27 .

4.4.7 On the Complexity of the Learner Model

Without considering the CAPEs, the size of a Learner Model is O(T ∗ C ∗ (M + A) ∗ Mc) where
T is the number of topic in the domain, C the number of competencies (and sub-competencies),
M the number of motivation factors, A the number of affective factors and Mc the number of
metacognitive abilities.

In practice, every belief in the Learner Model can be uniquely identified by its coordinate in the
4-dimension referential, i.e.<Mc,M&A,C,T>. This flattening out of the belief structure means that
an index-based storage with direct access to individual belief can be guaranteed (e.g. both in
memory with a hash-table and on a physical drive with a relational database).

If storage capacity is not (anymore) a major concern, time-consuming processes still remains a
critical factor in the design of learner models. The most reliable model becomes useless if any
update or query jeopardises the use of the system in a learning/teaching situation.

One aspect of the Learner Model that could be time-consuming: the retrieval of evidence re-
garding a particular belief (or a cluster of beliefs). This operation involves querying the Learner
History for every event related to a particular domain topic. But, on the positive side, it is ex-
pected that the evidence retrieval mechanism will be used only by the OLM, when the learner
ask for the reasons of a judgment on his/her characteristics. Being a GUI front-end on the client
side of the system, a (reasonable) delay can be expected before the system react to the learner’s
request.

Nevertheless, a special care will be put on the implementation of (potentially) time-consuming
operations. Several decisions have already been made in that direction. For example the XML-
RPC communication, initially envisaged between the xLM and LEACTIVEMATH, have been re-
considered, due to the slowness of the protocol and on the high number of queries to the LM that
have been highlighted in previous version of ACTIVEMATH. Furthers will certainly be consid-
ered all along the implementation cycles. For example, separating the Updater from the Learner
Model opens the possibility for independent asynchronous threads, allowing LEACTIVEMATH
components to query the LM while the Updater is still propagating evidence from the previous
event (an assumption here is that successive belief updates will not introduce radical shifts in the
LM). Lengthy retrieval operations could be shortened by implementing local caches (for exam-
ples, LH events identifiers could be stored in a cache associated with each belief in order to ease
the evidence retrieval).

4.5 The Situation Model

The Situation Model consists of two main subcomponents:

1. The Situation Diagnosis Agent (SDA) which is responsible for diagnosing the current situ-
ation in terms of situational factors based on the evidence available from other components
of LEACTIVEMATH.

2. The Situation Modeller which is responsible for inferring the autonomy and approval val-
ues based on the information determined by the SDA.
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<exercise id="fib_productderiv" for="DiffDeriv/diff_f">

<metadata >

<Creator role="aut">Christian Gross</Creator >

<Title xml:lang="en">Derivation of a product </Title>

<extradata >

<depends -on>

<ref xref="DiffDeriv/diff_f/fib_easyderiv"/>

</depends -on>

<learningcontext value="higher_education"/>

<learningcontext value="university_first_cycle"/>

<field value="all"/>

<difficulty value="easy"/>

<competency value="think"/>

<competency value="represent"/>

<competencylevel value="simple_conceptual"/>

<typicallearningtime value="00 :02:00"/>

<representation value="verbal"/>

<abstractness value="neutral"/>

</extradata >

</metadata >

<CMP xml:lang="en">

Please compute the <textref xref="DiffDeriv/diff_f">derivative </textref >

of the <textref xref="functions/function">function </textref >

$ap(f,x)=(2/3)*x^2*(7*x^3+4)$.

</CMP>

</exercise >

<exercise id="K17_TIMSS" for="deriv_maps/thm_diff_poly">

<metadata >

<Creator role="aut">Christian Gross</Creator >

<Title xml:lang="en">Find the equation of the function </Title >

<extradata >

<depends -on>

<ref xref="deriv_rules/diffrule_sum"/>

</depends -on>

<learningcontext value="secondary_education"/>

<learningcontext value="university_first_cycle"/>

<field value="all"/>

<difficulty value="medium"/>

<competency value="think"/><competency value="solve"/>

<competencylevel value="multi_step"/>

<typicallearningtime value="00 :04:30"/>

<representation value="verbal"/>

<representation value="symbolic"/>

<abstractness value="neutral"/>

</extradata >

</metadata >

<CMP xml:lang="en">

The <textref xref="functions/graph">graph</textref > of the

<textref xref="functions/function">function </textref > $f$

passes the point $list (1 ,2)$.

The <textref xref="DiffDeriv/slope">slope of the tangent </textref >

in any point $list(x,y)$ of the<textref xref="functions/graph">graph</textref >

is $ap(diff(f),x)=6*x-12$.

Compute $ap(f,x)$.

</CMP>

</exercise >

Figure 4.15: An extract of two exercises authored with OMDOC.
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The input to the Situation Model is a collection of evidence corresponding either to directly ob-
servable features of the interaction (e.g. overall difficulty of the current task taken from the
exercise metadata) or to inferred characteristics of the learner such as the current state of their
knowledge or the level of their achievement. Different sources of evidence are relevant to the
particular situational factors which are the input variables the situation modeller.

In the current version of the Situation Model, there are eight situational factors. In the context
of LEACTIVEMATH, the relevance of all of these factors to situation modelling was established
based on the results of stage-2 of the study described in section 2.3. The situational factors along
with their informal definitions are provided in table 4.7. The definitions were determined based
on the interviews and post-hoc cognitive walkthroughs with the tutors during which they were
asked to specify the meanings of the different factors explicitly.

Factor Name: Informal Definition

Correctness of student’s answer: The degree of correctness for the just completed
exercise.

Student’s confidence: The level of student’s positive self-belief in their
ability to tackle and to solve a given exercise
correctly.

Student’s aptitude: An estimate of the student’s ability to solve
a given exercise correctly.

Student’s interest: The level of student’s positive attitude towards
the just completed exercise.

Difficulty of material: Difficulty of an exercise obtained from the
metadata associated with the exercise.

Importance of material: Importance of an exercise to student’s overall
understanding of the material.

Student’s effort: An estimate of the amount of work done by the
student on the just completed exercise.

Student’s knowledge: An estimate of the student’s having mathematical
content pre-requisites for the current exercise.

Table 4.7: Situational factors used by the situational model and their informal definitions

The values of the factors correctness of the student’s answer, difficulty of material, importance
of material and student’s knowledge can be obtained from either the metadata associated with
an exercise or from the scenario type. Situational factors for which the values cannot be obtained
in this way, student’s confidence, student’s interest, student’s aptitude and student’s effort, are
diagnosed by the situation diagnosis agent.

The output of the situation model consists of two values corresponding to the dimensions of au-
tonomy and approval. As was discussed in section 2.1 according to a number of socio-linguistic
theories (e.g. Brown and Levinson (1987)) autonomy and approval are socio-psychological di-
mensions of face along which people can make their choices that are communicatively optimal.
In the educational context they are used to recommend levels of guidance (autonomy) and ap-
proval.
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4.5.1 The situation diagnosis agent

The situation diagnosis agent is a rule-based sub-component of the Situation Model in which the
rules are used to infer the specific factor values for all four situational factors that need to be
diagnosed by the agent and for which evidence is available at a point at which the system needs
to provide feedback to the learner. Evidence is obtained during a learner’s interaction with the
system on a particular task.

There are seven main sources of evidence which tutors tend to use to infer the values of the
four situational factors. In LEACTIVEMATH all of the sources are obtained through the Learner
History. The seven sources of evidence include:

1. Hesitation level which is established based on two variables:

• the elapsed time between the submission of tutor question or instruction and com-
mencement of student response.

• the expected time for the commencement of a student response which corresponds to
the average response time established for that student.

2. Linguistic cues of which the specific instances are:

• use of interrogative forms in student answers (e.g. “?”, “...”).

• use of hedges, e.g. “maybe”.

3. Achievement level of which the estimation depends on three variables:

• a number of recent student exercises (or steps in an exercise) under consideration (cur-
rently, based on our study analysis this number is set to 4).

• degree of correctness (mark) for each exercise (or step in an exercise).

• adjacency of the same marks with the number of exercises or steps considered.

4. Difficulty of material of which the variable is the rating of difficulty of a particular exercise
obtained from the metadata associated with the current and the previous exercise.

5. Spontaneous admissions which is established based on presence or absence in student’s
response of terms that refer their current motivational states, e.g. statements of enjoyment,
confusion, boredom, enthusiasm. The presence or absence of specific terms is determined
against a look up table established based on the corpus collected in our studies.

6. Granularity of solution steps which is determined by comparing two variables:

• the number of steps taken by the student to present the solution.

• the number of steps represented in the correct path of the domain reasoner.

7. Student’s initiative of which the specific (optional) instances include:

• Student asks a clarification question.

• Student volunteers to complete next possible step.

Whilst a number of sources of evidence can be obtained without natural language facilities, some
sources are inherently dependent on natural language. The latter type includes the linguistic
cues, spontaneous admissions and the first instance of student initiative: student asks a clarifica-
tion question. In the case of spontaneous admissions, alternative means of collecting the evidence
will be provided through the GUI in which self-reporting facilities will be made available to the
learners. Most of the seven sources of evidence can be obtained in LEACTIVEMATH without any
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Table 4.8: Importance of Evidence; 1 means low, 5 means high
FACTOR SOURCE OF EVIDENCE WEIGHT
Student Confidence:

Student hesitation 5
Linguistic cues 5
Spontaneous admissions 5
Student initiative 4
Granularity of solution steps 3

Student Interest:
Student initiative 5
Spontaneous admissions 5
Granularity of solution steps 4
Achievement 3

Student Effort:
Student initiative 5
Granularity of solution steps 5
Difficulty of material 4
Achievement 3

Student Aptitude:
Achievement 5
Difficulty of material 5

reliance on natural language dialogue. These include hesitation level, achievement level, dif-
ficulty of material, granularity of solution steps and the second instance of student’s initiative:
student volunteers to complete next possible step.

The same source of evidence may be used to contribute to the diagnosis of more than one factor.
However, as shown in figure 4.8, the diagnosis of the individual factors relies on a unique com-
bination of the sources of evidence. Additionally, our data analysis suggests that not all sources
of evidence are considered to be equally important by the tutors. Some sources of evidence gen-
erally contribute more to the diagnosis of certain factors than other sources. This means that
each source of evidence may be assigned a weight reflecting the relative importance of a source of
evidence that should be taken into account during a factor value diagnosis. Although we are still
in the process of analysing the verbal protocols and the data gathered during the walkthroughs
from stage-2, we can already see certain patterns in the way different sources of evidence con-
tribute to the estimation of the specific factor values. The specific numbers may change as more
data is gathered and analysed, but such changes will have no bearing on the overall implemen-
tation of the model. In table 4.8 we provide a summary of the four factors for which the values
need to be determined by the SDA, the specific sources of evidence that contribute to the diag-
nosis of each of the factors, and the weights that represent tutors’ comments about the relative
importance of each type of evidence to the diagnosis of a value for a specific factor. The weights
are given on a scale from 1 to 5 where 1 means low and 5 means high.

In addition to the weight which represents the relative importance of a source of evidence to the
diagnosis of a factor value, our study also suggests that tutors take into account the frequency with
which a particular type of evidence occurs in an interaction. For example, hesitation evidence is
taken more seriously by the tutors if it is observed several times in the same interaction and
recently in relation to the current task, rather than if it occurs only once or if its occurrence is not
recent.
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Ultimately, the overall importance of each source of evidence is calculated based on a strength value
which is determined by the frequency of occurrence within a current session and on a relative
importance value which indicates the relevance of a source of evidence to a factor. The frequecy
of occurrence of particular evidence will be established dynamically and cumulatively during a
learner interacting with LEACTIVEMATH based on the total number of occurrences of a particular
type of evidence in a given interaction and on the recency of such occurrence.

For every source of evidence contributing to the diagnosis of a particular factor we developed
a set of diagnosis rules which specify the evidential pre-conditions for particular factor values. As
shown in table 4.8, the diagnosis of all four factors relies on multiple sources of evidence. For
every source of evidence available at the time of diagnosis there is an evidential instance which in
the relevant diagnosis rule is represented as its evidential pre-condition. For example, difficult is
an evidential instance of the Difficulty evidence which also serves as one of the possible evidential
pre-conditions in the rules which are used, for example, to diagnose student effort and student
aptitude.

A factor value that is used eventually as the input to the situational modeller is a composite of all
the possible values inferred for that factor based on the individual sources of evidence. In other
words, the final factor value corresponds to the weighted mean of the results of applying the
relevant evidential pre-conditions in a given set of diagnosis rules and it includes the strength
and the relative importance associated with each source of evidence. The specific formula used
for performing this calculation is given in 4.3.

f v(e) =
n

∑
i=1

( f v(ei) ∗Wi)
n

(4.3)

where f v(e) is the composite (final) value of a factor, f v(ei is the component value derived from
an individual piece of evidence ei and Wi is the overall importance (or overall weight) of the
evidence ei.

The overall weight Wi of an individual piece of evidence ei is simply the mean of the relative
importance Ri and the strength Si of the evidence:

Wi =
Ri + Si

2
(4.4)

Whilst in some cases a single evidential pre-condition is sufficient to derive a factor value, in
other cases two or more pre-conditions are required for this purpose. For example, in the set
of sources of evidence for inferring student confidence, first the sources are used individually to
derive the respective student confidence values and then the results of these individual derivations
are combined using the weighted mean function. On the other hand, for student effort the sources
of evidence are combined using an algorithm in which the weighted mean function is applied
straight away. There are two reasons for this difference. The first reason is the desire for the
rules to be as perspicuous as possible. In the case of student effort there are only two sources of
evidence used, while in the case of student confidence there are five sources. The more sources
are available for making a factor value diagnosis the more difficult it is to combine them in a
coherent and easy to modify way using single steps. The second reason is the sufficiency of
evidence vs. necessity of evidence conditions. In the case of the student confidence factor, it may
be the case that not all evidence is available at the time of diagnosis. For example, linguistic cues
and spontaneous admissions are only available through natural language dialogue. However, these
sources are not necessary to allow for an appropriate diagnosis of the factor value to be made and
the remaining sources of evidence are sufficient. On the other hand, in the case of student effort
both sources of evidence are necessary to make the appropriate diagnosis as neither student’s
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Let’s assume:

• eh to be hesitation evidence with Weh = 1

• eg to be granularity of solution step evidence with Weg = 0.77

• ei to be student initiative evidence with Wei = 0.3

Let’s also assume that:

• f v(e) is the final confidence value

• f v(eh) is the confidence value derived based on hesitation evidence

• f v(eg) is the confidence value derived based on granularity of solution step evidence

• f v(ei) is the confidence value determined based on student intiative evidence

Finally, let’s assume that:

• f v(eh) is medium = 0.5

• f v(eg) is low = 0.25

• f v(ei) is very low = 0.01

We can derive the final confidence value f v(e) by using equation (4.3):

f v(e) =
( f v(eh) ∗Weh) + ( f v(eg) ∗Weg) + ( f v(ei) ∗Wei)

3
(4.5)

f v(e) =
(0.5 ∗ 1) + (0.25 ∗ 0.77) + (0.01 ∗ 0.3)

3
(4.6)

f v(e) =
0.5 + 0.1925 + 0.003

3
(4.7)

f v(e) = 0.23 (4.8)

Figure 4.16: Example of calculating a final value for student confidence given 3 evidence sources

level of achievement nor the difficulty of the material are individually sufficient to allow for the
value of student effort to be determined.

The specific sets of diagnosis rules corresponding to the various sources of evidence are given
in tables 4.9, 4.10, 4.11, and 4.12. Whilst the less complex rules are specified in full, for the more
complex ones only a subset are provided for the purposes of conciseness and readability. Note
that these rules are subject to further revision.

In the rules provided in the tables the values diagnosed for each factor are High and Low respec-
tively. These values are used here for illustrative purposes and they represent High and Low
regions rather than discrete values. In practice, the tutors in our studies diagnosed most of the
situational factor values at least in terms of one of the five basic fuzzy linguistic descriptions
shown in table 4.13. These descriptions will also constitute the possible situational factor values
in our implementation. In table 4.13 we also provide the numerical values in terms of which we
interpret the corresponding five fuzzy linguistic descriptions. An example of how these values
would be used in calculating a final factor value which could be then pass on to the situation
modeller is shown in figure 4.16.
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Table 4.9: Diagnosis rules for inferring the value of student confidence, where C means confidence
value.

Evidence Source Rule Number Evidential Precondition(s) Result
1. Hesitation:

1.1 IF time elapsed is greater
than time expected THEN C = Low

1.2 IF time elapsed
is smaller than or equal to
time expected THEN C = High

2. Linguistic cues:
2.1 IF specific instance

present in solution step THEN C = Low
ELSE
C is Unknown

3. Student Initiative:
3.1 IF specific instance

present in solution step THEN C = High
ELSE
C is Unknown

4. Spontaneous
Admissions:

4.1 IF admission of confusion
present in solution step THEN C = Low

ELSE
C is Unknown

5. Granularity
of solution steps:

5.1 IF 1 step
and Rule 1.2 applies THEN C = High

5.2 IF more than 1 step
and Rule 1.1 applies THEN C = Low

5.3 IF more than 1 step
and Rule 1.2 applies THEN C = High
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Table 4.10: Diagnosis rules for inferring the value of student interest, where I means interest value and
p correct means partially correct.

Evidence Source Rule Number Evidential Precondition(s) Result
1. Achievement:

1.1 IF 1 incorrect + 2 correct
+ 1 p correct THEN I = High

1.2 IF 1 incorrect + 1 correct +
2 p correct THEN IF ADJACENT

(incorrect and p correct)
THEN I = Low
ELSE
I is Unknown

... ... ...

1.10 IF 4 incorrect THEN I = Low

1.11 IF 4 p correct THEN I = Low

1.12 IF 4 correct THEN I = High

2. Student Initiative:
2.1 IF specific instance

present in solution step THEN I = High
ELSE
I is Unknown

3. Spontaneous
Admissions:

3.1 IF admission of confusion
or boredom
present in solution step THEN I = Low

ELSE
I is Unknown

3.2 IF admission of enthisiasm
or enjoyment
present in solution step THEN I = High

ELSE
I is Unknown

4. Granularity
of solution steps:

4.1 IF 1 step THEN I = High
ELSE
I is Unknown

©LEACTIVEMATH Consortium 2005 Page 78 of 133



Deliverable D10
Student Model Specification

LEACTIVEMATH (IST-507826)

Table 4.11: Diagnosis rules for inferring the value of student effort, where E means effort value and p
correct means partially correct.

Evidence Source Rule Number Evidential Precondition(s) Result
1. Achievement and
Difficulty:

1.1 IF 1 incorrect + 2 correct
+ 1 p correct
AND difficulty = High THEN E = High

1.2 IF 1 incorrect + 2 correct +
1 p correct
AND difficulty = Medium THEN E = High

1.3 IF 1 incorrect + 2 correct +
1 p correct
AND difficulty = Low THEN E = Low

1.4 IF 1 incorrect + 1 correct +
2 p correct
AND difficulty = High THEN IF ADJACENT

(incorrect and p correct)
THEN E = Low
ELSE
E is Unknown

... ... ...

1.N IF 4 correct
AND difficulty = High THEN E = High

2. Student Initiative:
2.1 IF specific instance

present in solution step THEN E = High
ELSE
E is Unknown

3. Granularity
of solution steps:

3.1 IF 1 step THEN E is Unknown
ELSE
E = High
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Table 4.12: Diagnosis rules for inferring the value of student aptitude, where A means aptitude value
and p correct means partially correct.
Evidence Source Rule Number Evidential Precondition(s) Result
1. Achievement
and Difficulty:

1.1 IF 1 incorrect + 2 correct
+ 1 p correct
AND difficulty = High THEN A = High

1.2 IF 1 incorrect + 2 correct +
1 p correct
AND difficulty = Medium THEN A = High

1.3 IF 1 incorrect + 2 correct +
1 p correct
AND difficulty = Low THEN A = Low

1.4 IF 1 incorrect + 1 correct +
2 p correct
AND difficulty = High THEN IF ADJACENT

(incorrect and p correct)
THEN A = Low
ELSE
E is Unknown

1.5 IF 1 incorrect + 1 correct +
2 p correct
AND difficulty = not High THEN A = Low

... ... ...

1.N IF 4 correct
AND difficulty = High THEN A = High

Table 4.13: High/Low ranges of situational factor values, the fuzzy linguistic descriptions and the
corresponding numerical values.

.

Range Fuzzy Description Numerical Value

High very high 1

high 0.75

medium 0.5

Low low 0.25

very low 0.01
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In the example shown in fig 4.16, based on the combined evidence available for student confi-
dence, we calculated the final value of student confidence to be 0.23 which in fuzzy linguistic
terms corresponds to upper-most region of very low. This value is now ready to be passed on
to the situational modeller which will use it together with other factor values calculated in this
manner to calculate the recommendations for autonomy and approval values.

4.5.2 The situational modeller

The situation modeller is responsible for calculating the autonomy and approval values based
on specific combinations of situational factor values diagnosed by the SDA. In our approach
to situation modelling we are relying on the pre-existing model proposed by Porayska-Pomsta
(Porayska-Pomsta, 2003) and initially using its current implementation in order to have a first
working situation model by month 18 of the project. Whilst we are concentrating all our efforts
on delivering a fully functional SDA which is informed by the data gathered in the context of
LEACTIVEMATH by month 18, the new implementation of the situational modeller will be deliv-
ered by month 24 of the project. The computational techniques and the main principles by which
they were used by Porayska-Pomsta will be retained as we are confident that they are appropri-
ate for the task. However, details of the design of the situational modeller will change based on
the data obtained from our studies. Therefore, in this section we describe the techniques and the
principles by which those techniques are used and the reasons for using them. We also outline
the changes that will be needed to the original model to accommodate the requirements imposed
by the context of LEACTIVEMATH and we discuss the methods that we plan to use to deliver the
new situational modeller.

4.5.2.1 The basics of the situational modeller design

The input to the situational modeller is a situation. Just as is the case in the context of LEACTIVE-
MATH, in the original model a situation is composed of eight factors. In the original model the
factors belong to three possible groups: the lesson oriented factors (LOFs) which are concerned
with temporal aspects (amount of time available and amount of material left to cover) and the
content taught (difficulty and importance of material), the motivation oriented factors (MOFs)
concerned with student motivational characteristics referring to student confidence and interest,
and performance oriented factors (POFs) which inform the model with respect to student ap-
titude and correctness of their actions. In the model this grouping of factors will be retained.
However, temporal factors will be removed because they are not of relevance to the context of
LEACTIVEMATH, i.e. no limit is imposed on the amount of time that a learner may, or has to,
spend on a given material nor is there a set amount of material required to be covered by the
learner in a single session. In the new version of the situational modeller, the difficulty and im-
portance of material will be the only lesson oriented factors retained from the original version of
the model. In addition to these two factors student knowledge will be added to the LOFs group to
reflect the relevance of this factor to tutors’ decisions in the studies. Also the MOFs group will
be enlarged by the student effort factor which was established as relevant in the context of LEAC-
TIVEMATH. The performance oriented factors will remain the same. The groupings of factors
that will be used in the new model and its implementation are shown in table 4.14.

In the original situational modeller, each factor may contribute in different degrees to the calcu-
lation of autonomy and approval, depending on a given situation in which it occurs. The level
of contribution of a factor is also referred to as its salience. Salience is an important facet of the
situation model which relies on the assumption that although every situational factor has a po-
tential impact on the possible tutorial actions that may be taken, not all factors will have an equal
impact. This is being confirmed by our data analysis which indicates that whilst many different
factors contribute actively to the choices made by the tutors, only a few of them are crucial in
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Table 4.14: Groupings of factors in the new situational modeller.
Group Factor

LOFs
Difficulty of material
Importance of material
Student knowledge

MOFs
Student confidence
Student interest
Student effort

POFs Student aptitude
Correctness of student answer

any given situation. In the model, the salience of each factor in a particular situation depends on
other co-occuring factor values. Our data analysis (in particular Pearson’s coefficient) revealed a
number of different interdependencies between the situational factors which will be used to infer
salience values for the factors in the model implemented in the context of LEACTIVEMATH.

Each factor either by itself or by combining with another factor evokes goals. Goals reflect the
nature of the factors that give rise to them in the first place. Each goal has a salience associated
with it which is passed on to it from its parent factor. The situational modeller distinguishes
between two types of goals: the local goals and the global goals. Essentially, the global goals are the
goals which map directly onto the the autonomy and approval dimensions which constitute the
driving force behind the model. Such goals are expressed either as Guide or Don’t guide (guidance
oriented goals – GOGs) for the autonomy dimension, or as Approve or Don’t approve (approval
oriented goals – AOGs)for the approval dimension. Some goals give rise to global goals directly.
For example, difficulty of material: difficult leads to the global goal Guide. Other factors give rise to
local goals. For example, student confidence: high evokes the goal boost confidence. The distinction
between the local and global goals will be applied in the context of LEACTIVEMATH.

In order to acquire meaning in terms of autonomy and approval, the local goals need to be either
translated or recast. The translation is needed for those goals which cannot be paraphrased in a
consistent way in terms of the global goals. For instance, it is not clear whether the local goal boost
interest, which arises as the consequence of the situational factor student interest having the value:
low, means that the student should be provided with guidance or not. In this case the appropriate
interpretation depends on other factors such as difficulty of material and student aptitude, which are
used together with their salience to qualify the extent to which the teacher needs to provide the
student with guidance. On the other hand, recasting is needed for those local goals which can be
paraphrased in a consistent way in terms of the global goals. For example, the goal boost confidence
may be recast in terms of the global goal as give approval. Both ways of interpreting local goals in
terms of autonomy and approval will be applied also in the context of LEACTIVEMATH.

Once translated and recast, each goal contributes an equal vote towards the final verdict of
whether or not to guide and whether or not to give explicit approval to the student. Voting
is a way of combining all the relevant gloabal goals together with their salience which is passed
on either unchanged from the corresponding situational factor (e.g. the salience of the global goal
Guide is passed on from the difficulty: high) from which it arises, or it reflects the combination of
the salience values of two or more factors (e.g. the salience of the global goal Guide arising from
the student interest: low and the modifing factors difficulty: high and aptitude: low). The result of
voting consists of two GOGs: Guide and Don’t guide, and two AOGs: Approve and Don’t approve.
Each of the goals has a number between 0 and 1 associated with it. The number – the result of
combining all of the relevant salience values – expresses the degree to which each goal applies
to a given situation. Because the number must fall in the [0,1] range, when a goal is picked its
number also defines the degree to which its opposite applies to a given situation. A small num-
ber such as 0 means that a given goal is not recommended in a given situation. Such number also
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informs one that the opposite of the given goal is very suitable for that situation. Similarly a high
number such as 1 is a definite confirmation that a goal with which it is associated is a suitable
one for a particular situation.

Before the final verdict is given by the situational modeller, the votes are modified by the relevant
performance oriented factors which simply means that the votes are qualified by the appropriate
factor-value and its salience as to the nature of the final goal and the level with which it applies
to a given situation. For example, if the result of voting is the recommendation to provide the
student with high amount of guidance, then if student aptitude is low and the correctness of student’s
answer is incorrect, then the recommendation for high degree of guidance is strengthened further
and the result is a low value of autonomy given as the final recommendation from the situational
modeller.

The interpretation of the final goals in terms of the two dimensions is straightforward. The two
GOGs and the two AOGs which result from voting represent the extremes of the Autonomy and
Approval dimensions respectively. Don’t guide and Approve, constitute the positive extremes,
while Guide and Don’t approve are the negative extremes. In the current model the Autonomy
and Approval dimensions are understood in a positive sense: to give Autonomy means not to
guide which is expressed directly by the GOG: Don’t guide, while Approval means simply to ap-
prove and is expressed directly by the AOG: Approve. Thus, in order to infer the final values of
Autonomy and Approval, the recommended goals need to be exactly Don’t guide and Approve to
some degree. The values associated with them express the strength with which they are to be
applied to a given situation. For example, a low value of Don’t guide means that not guiding a
student is not only not recommended but that guidance may be a more desirable course of action.
Similarly low value of Approve means that there is no great urgency in giving the student explicit
encouragement.

In the current model the goals are not reconciled in the strict sense of the word; for the Autonomy
dimension the goal Don’t guide will always be chosen as the indicator of the autonomy value.
The number associated with it tells one about the force with which it ought to be applied. If
the number is small, then effectively this means that quite a lot of guidance should be given to
the student. If the number is large – little guidance ought to be given. Finally, if the number is
around 0.5, then the goal should be applied with medium force. The same principle applies to the
goals Approve and Don’t approve, except that the goal chosen as indicator of the approval value is
Approve. In that sense neither the Guidance nor the Approval goals respectively are independent
from each other in that the salience value of Don’t guide implies the salience value of Guide and,
similarly, the salience value of Approve informs one about the value of Don’t approve.

The principles by which the calculations of autonomy and approval are made in the original
model will be applied in the context of LEACTIVEMATH.

4.5.2.2 The implemention of the situational modeller

The implementation of the original situational modeller follows its design very closely. This also
will be the case once we make our final decisions as to the exact shape of the situational modeller
in the context of LEACTIVEMATH. In particular we are as yet to define the way in which the in-
dividual factors will combine with one another and we need to determine salience for individual
factors in a subset of possible situations. In this section we concentrate mainly on describing and
defending the choices of the techniques that are used in the original implementation and that
will be used also in the LEACTIVEMATH implementation.

The original implementation of the situational modeller uses a Bayesian Network (BN) tech-
nique. The BN is implemented in C++ programming language using the SMILE5 library which

5Both SMILE and GENIE are decision-theoretic software and have been developed by the Decision Systems Labora-
tory, at the University of Pittsburgh (DSL, 1999).
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is designed specifically for the purpose of implementing naive Bayesian Networks. SMILE also
comes with a graphical user interface (GUI) called GENIE which allows one to create the basic
BN structure without having to code it explicitly in C++, which in the case of the network repre-
senting the situational modeller would have been very cumbersome and difficult to accomplish
and to inspect. Once the structure of the network is in place, SMILE functions can be used to cre-
ate code which reads the network, writes prior and conditional probabilities into the individual
nodes, sets evidence on the nodes, and runs the network.

The choice of Bayesian Networks to represent the situational component of the model is strongly
motivated by its primary purpose which is to represent the process of making decisions regard-
ing the best form of feedback, given a finite set of pre-defined constraints. Specifically, Bayesian
Networks are used in the implementation of the situational modeller because they are an effi-
cient method for making decisions based on some evidence from the real world. In that sense
they provide an intuitively natural way of reproducing certain diagnostic and decision making
capabilities of a human tutor. More importantly Bayesian Networks allow one to model complex
dependencies between random variables in an efficient manner. It is precisely the purpose of the
situational modeller to represent such complex dependencies between situational factors and to
use them to infer the autonomy and approval values. In contrast with rule-based systems, for
instance, in which representing such dependencies would not only be very cumbersome, but also
very difficult to inspect and to change, Bayesian Networks provide a compact way of describing
the entire distribution of the variables in terms of manageable and inspectable probability tables
(e.g., Heckermann (1996); Guo and Hsu (2003)) – they facilitate efficient storage of data.

Furthermore, Bayesian Networks allow one to instantiate arbitrary subsets of variables (regard-
less of whether or not they are fully specified) and to calculate the conditional distributions on
another subset in order to make a decision based on those distributions. In other words, just
as they provide an efficient way of storing large amounts of complex data, Bayesian Networks
have the capability of performing inference in an efficient manner which is ideally suited to mod-
elling situations based on incomplete evidence. In the case of the original model as well as the
model developed in the context of LEACTIVEMATH, the conditional distributions of all the rel-
evant stages in the process of making a decision about the appropriate levels of autonomy and
approval are based on the instantiations of the situational factors provided as the input to the
model.

In the implementation of the situational modeller which we will use initially, there are altogether
four levels of nodes which separate the input provided by the system from the final classification
of the situation in terms of the autonomy and approval values. In terms of probabilities, the
autonomy (in the network: no-guidance) and approval values can be also read as the degrees of
belief that the autonomy and the approval ought to be granted to the student.

When the evidence is set on the top-level nodes, the values from those nodes are propagated
down the network to all of the children nodes. The second level of nodes is used to represent
all of the global goals such as GOGs and AOGs evoked by the individual situational factors.
Whilst explicitly part of the model, the local goals such as LOGs and MOGs are modelled in
the BN only implicitly. This is possible because in the model there is a one-to-one mapping
between the situational factor-values and the local goals. For example, the factor-value student
confidence: low always evokes the goal boost confidence. This allows for the local goals to be inferred
implicitly from the factor-values, thus reducing the complexity of the network. It also reduces
the complexity of inference necessary to propagate the evidence through the network.

The definition of every node at level two relates to at least one input state and two outcome
states. The input states represent the factors which contribute to the definition of a node, the
factor-values and their individual salience. The outcome states refer to the possible effects of the
input states, while the probabilities express the likelihood that these effects will occur.

Essentially, the definitions of GOGs and the AOGs nodes represent the way in which the input
states affect the probability of guide and not guide and approve and not approve being the case.
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Table 4.15: Mapping from fuzzy terms onto numerical values

Fuzzy-term Numerical Value
very low 0.12
low 0.23
relatively low 0.34
low-medium 0.45
medium 0.56
medium-high 0.67
relatively high 0.78
high 0.89
very high 1.00

The nodes are populated with conditional probabilities using the rules specifically developed
for this purpose based on the data collected by Porayska-Pomsta in the context of a different
tutoring domain. We are currently analysing the data from our LEACTIVEMATH studies in order
to inform the rules for populating the network developed for LEACTIVEMATH. However, the
general shape of the rules that will be developed for LEACTIVEMATH will be similar to the ones
used for populating the original network.

Thus, the relevant rules will contain the information about those factor-values which affect the
outcome states positively and those that affect them negatively. For example, in the case of GOG
difficulty, the factor-values student aptitude: low and DIFFICULTY: high will affect the outcome state
guide positively, while having a negative effect on the state not guide.

Given all the information expressed in the rules, the individual conditional probabilities are cal-
culated on the basis of the salience associated with each input state. To determine the salience for
the input states (or simply the salience of the individual factors in a given situation) Porayska-
Pomsta relied on data collected in the context of another tutoring domain. Determining the
salience of individual factors in specific situations is one of the outstanding issues in the current
specification. We are analysing the data collected in the context of LEACTIVEMATH in order to
address this issue. However, the mechanism for calculating conditional probabilities which rely
on salience will be similar to the one used by Porayska-Pomsta. In figure 4.17 we are using one
of her examples to show how conditional probabilities are actually calculated based on the rules
for combining the situational factors difficulty of material, student aptitude and student interest. The
equations in 4.17 calculate the conditional probability of guidance of interest based on the salience
of the input states difficulty: high with a salience value relatively high associated with it, interest:
low with salience value very high associated with it and student aptitude: low with a salience value
medium attached to it. In 4.15 we show the numerical translations of the possible fuzzy linguis-
tic description of the salience values used by Porayska-Pomsta to indicate where the numerical
values in our example 4.17 come from.

Example 4.17 shows that the probability of having to give plenty of guidance to a given student
who is rather bored and not coping well with the material in the circumstances where the material
is difficult is very high, 0.89. The example also illustrates the general shape of the rules that we
are in the process of determining based on the data gathered in our studies.

The third level in the network consists of two voting nodes: the Autonomy Votes and the Ap-
proval Votes nodes. When evidence is set and propagated through the network, the strength of
recommendation is calculated for each outcome state in the Autonomy Votes and in the Approval
Votes respectively. The strength of the recommendation is expressed in terms of the posterior
probabilities (i.e., probabilities after running the network) of the occurrence of each of the out-
come states in those nodes. The smaller the posterior probability for the positive state, the weaker
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• Assumption: The input states are difficulty:high with salience: relatively high, student interest:
low with salience very high and student aptitude: low with salience medium.

• Fact: The table 4.15 indicates that the fuzzy terms relatively high corresponds to the numer-
ical value 0.78, term very high corresponds to 1.00, while medium corresponds to 0.56.

• Rule: Rule for calculating guidance of interest indicates that: IF interest: low and difficulty:
high and aptitude: low THEN Guide with Pr(guidance of interest) being calculated based on
the equation 4.9

• Equation: Given the assumptions above and the equation below, the calculation in 4.10 will
result in the conditional probability of the state guidance of interest given the three input
states: interest:low with salience: very high, difficulty: difficult with salience relatively high and
aptitude: low with salience medium

Pr(guidanceo f interest) =

( Sinterest+Saptitude+Sdi f f iculty
3

)
+ 1

2
(4.9)

Pr(guidanceo f interest) =

(
1+0.56+0.78

3

)
+ 1

2
= 0.89 (4.10)

Figure 4.17: Calculating the conditional probability for the state guidance of interest given the input
states slow-medium and v-little-rel-high.

the recommendation and vice versa, the larger the probability, the stronger the recommendation.

The input states to the Autonomy Votes nodes are the outcome states of all of the GOG nodes,
while the input states to the Approval Votes are the outcome states of all of the AOGs.

In the case of both Autonomy Votes and Approval Votes, all of the contributing votes have an equal
impact on the outcome states which is expressed by the weights attached to them. For example
assuming the node Autonomy Votes to have five inputs, the weights for each input state which
contributes positively to an outcome will be set to 0.2. In the case of both nodes, the conditional
probabilities for each outcome state are calculated by summing all of the positive and negative
contributions.

The voting nodes constitute the input to the nodes on the fourth and the final level of the network,
the Autonomy and the Approval nodes being the final output nodes in the situational part of the
system. The results of the voting performed on the third level in the network need to be modified
further by the relevant situational factors. An example of a calculation for the outcome state
guidance, given the input states guide and correctness: partially correct with salience: high is given in
figure 4.18.

Ultimately, the output of the network consists in the posterior probabilities of the outcome states:
guidance and no guidance of the Autonomy node, and approval and no approval states of
the Approval node. These probabilities should be treated as representing the recommendations
regarding the amount of autonomy and the amount of approval that ought to be given to a
student in the situation specified as the input to the system. The output of the Situation Model
that will be made visible to the interested components of LEACTIVEMATH will be the values
indicated for no guidance and approval states, and will be presented as autonomy and approval
respectively.
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• Assumption 1: the input states are guide and correctness: partially correct with salience:high

• Assumption 2: the weight of the input state: guide is 1 indicating that this state is based
on the combined votes by five parent nodes each having equal impact on the voting results
which is expressed by the weight of 0.2.

• Assumption 3: the weight of the input state: correctness: partially correct is 0.2 indicating
that this state has the same impact on the final Autonomy result as the individual votes of
the GOG nodes, but a lesser impact than their combined weight.

• Fact: The table 4.15 indicates that the fuzzy terms high corresponds to the numerical value
0.89.

• Rule: The rule for calculating the probability of autonomy based on combining the results of
Autonomy Votes and the modifying factor correctness of student answer indicates that IF guide
and correctness: partially correct THEN guide with Pr(guidance) being calculated based on
the equation in 4.11.

• Equation: Given the assumptions and the equation 4.11, the calculations in 4.12 will result
in the conditional probabilities for the outcome state guidance which state is the opposite of
autonomy, given two input states guide and correctness: partially correct with salience: high.

Pr(guidance) =

( (Wguide+Scorr∗Wcorr)
Wguide+Wcorr

)
+ 1

2
(4.11)

where Wguide = 1 and Wcorr = 0.2.

Pr(guidance) =

(
(1+0.89∗0.2)

1.2

)
+ 1

2
= 0.9908 (4.12)

Figure 4.18: Calculating the conditional probability of the outcome state guidance given guide and
correctness: partially correct with salience: high
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4.5.3 The output of the Situation Model

The output from the Situation Model are the two values corresponding to the recommended
level of Autonomy and Approval respectively. Given that in the context of linguistic politeness,
the two dimensions are proposed as directly relevant to selecting natural language feedback in
a strategic way we begin by illustrating how they may be used to inform the decisions of the
Dialogue Manager.

4.5.3.1 The Dialogue Manager’s use of Autonomy and Approval

The Dialogue Manager consists of, amongst others, a collection of communicative strategies each
of which are coded for autonomy and approval values in the range between 0 and 1. Once the
output from the Situation Model is provided, the Dialogue manager can use it to plan for the
most appropriate feedback in the current circumstances. For example, the DM may plan to apply
a high level remediation strategy to address a student’s incorrect action. Given that there may
be many different lower level types of remediation, autonomy and approval recommendations
received from the Situation Model may be used in making the choice in a way which attempts to
accommodate the cognitive and emotional needs of individual students.

Description of the output requested from SM to DM:

• DM requests from SM: void giveAutAppRec(+student, +tutorTurn, +AutAppRec)

4.5.3.2 Tutorial Component’s Use of Autonomy and Approval

In line with the Dialogue Manager, the course generation provided by the Tutorial Component
(TC) may also benefit from the recommendations of the Situation Model. There are at least three
ways in which autonomy and approval values might be used by the TC:

1. In preparation of the book to be presented to a given student. Autonomy and approval
values may affect the way in which the book is authored. For example for weaker students,
for whom the recommended autonomy may be lower than for good students, a book may
contain more and simpler exercises. The exercises may be presented in more steps and
there may be more explanations provided. In particular, autonomy and approval values
can be used within an exercise to inform the choices between methods.

2. In deciding on the appropriate way in which to present pre-requisites to the student. Strong-
er students may not require explicit listing of all pre-requisites needed for a given course.
Such students may be given higher autonomy and may choose to find the pre-requisites
through their own initiative.

3. In relation to suggestions, in deciding on the form to use when inviting the student to
check out dictionary entries. The way in which invitations may be issued to the student to
check dictionary entries may be affected by the recommended level of autonomy. The more
guidance is recommended for a given student the more explicit the instruction should be
for the student to check out the dictionary, e.g. "You should have a look at X" instead of a
more autonomy giving invitation: "Remember that you can always check out X if you feel
stuck".

Description of the output requested from SM by TC:

• TC requests from SM: void giveAutAppRec(+student, +tutorTurn, +AutAppRec)
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4.5.3.3 Situation Model’s Input to the Learner History Component

The Situation Model also provides the input to the Learner History. This input consists of a list
of all the factor values determined for a particular situation (i.e. the input to the SM) as well as
the evidence used to determine it.

4.5.4 Outstanding Issues

In this subsection we summarise the issues which still need to be addressed in relation to the
Situation Model.

• Finish compiling diagnosis rules in the SDA and test the validity of the results of applying
them.

• Determine salience for individual situation factors in a subset of possible situations relevant
to the context of LEACTIVEMATH. Such subset of situations is already in place and was
gathered through the studies described in the earlier sections of this document. This is
necessary to provide a mechanism for calculating autonomy and approval values which
conform to the context of the LEACTIVEMATH tutoring domain.

• Determine the ways in which different situational factors combine in the context of LEAC-
TIVEMATH. This is needed for defining the basic shape of the Bayesian Network.

• Determine the exact rules that can be used to populate the Bayesian Network with condi-
tional probabilities.

4.6 The Open Learner Model

When a learner is using the OLM, we can distinguish between navigation acts (i.e. selecting the
topics to investigate, browsing the model for information, etc.) and interaction acts (i.e. argumen-
tation between the OLM and the learners about performance/behaviour, etc.). The navigation
acts will be subject to further elaboration and refinement during the next months as the GUI of
the OLM is developed; this document focuses mostly on specifying the interaction acts.

First we briefly address the issue of the learner’s “objective” performance and the OLM’s “sub-
jective” judgments of these performance and how they are to be introduced and handled in the
system. Second, we introduce how the OLM will manage the justification for its judgments by
handling “evidence” arising from the interaction between the learner and the system. Third, we
provide the set of dialogue moves that the learner and the OLM can use to establish a diagnosis
dialogue about beliefs. Finally, we give an overview of how the OLM will be integrated into the
LEACTIVEMATH architecture.

4.6.1 Performance and Judgements

Within the OLM, interaction with the learner can be based on a behaviour/performance system
(e.g. “you scored 70%”) and on value judgements (e.g. “you did well”). If the former does not
represent a major problem (apart from deciding how to externalise this information), the latter
is certainly more complex to handle, in particular when come the question of the nature of the
beliefs hold by the Learner Model (see section 4.4.3).

Squarely externalising the numerical representation of a belief, i.e. the distribution of certainty
and plausibility over the levels as in figure 4.13, may have some justification 6 but it assumes that

6and does open the ground for further interesting investigations.
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the learner is familiar with the learner modelling process applied in LEACTIVEMATH. Moreover,
it may be detrimental to one of the objectives of an Open Learner Model, i.e. supporting the
learner in his/her self-reflection.

When a learner ask the OLM "How competent do you think I am with the chain rule", one could
assume that he/she doesn’t want to be told "I’m quite certain that you may be between Level I and III
but there is also a good chance that you may be just a Level II but also a none-negligible chance of you being
at Level III" but rather "I think that you are at Level III" or even "I think you are quite competent".

This mean that the OLM has to make a decision about which value judgement to present to the
learner. And this decision-making is two-fold:

1. The OLM have to decide which is the dominant trait of the belief, i.e. what is the domi-
nant set of levels or even what is the dominant level. One one hand, this decision-making
could be relinquished to the LM itself, since it offers a numerical summary of the belief rep-
resenting its dominant trait. But more sophisticated approaches could be envisaged. For
example, the knowledge the LM holds about the learner (e.g. motivation, affective factor
like satisfaction, etc.) could be used to help to decide how to externalise this knowledge.

2. The OLM has to value this dominant trait in order to inform the learner about its judge-
ment. We have mapped out a set of such judgements but more work is needed to refine
it, in particular by taking into account current work on how to talk about mathematical
competencies and competency level with learners.

4.6.2 Evidence

The links between LH events and LM can be used as evidence for justifying a judgment made
by the OLM7, see figure 4.19. Each time some changes are made in the LM (such as when the
learner accesses a given concept or when the learner’s performance on an exercise is recorded), a
relevant event is stored in the LH. Over time, all events related to a given concept accumulate and
constitute evidence for the current state of the system’s beliefs on that concept. When challenged
by the learner, the OLM could present this evidence to the learner, i.e. the events from the LH. But
as they come from numerous sources, with various degrees of strength, reliability and relevance,
a mechanism for organising them has to be provided.

Let’s take an example of a possible dialogue between the student and the OLM:

• Learner (Inquire): Show me what you think about my confidence about the Chain Rule

• OLM (Inform): I think you are quite confident about the chain rule

• Learner (Challenge): I do not understand how you reach your conclusion

• OLM (Justify): Here is the evidence I have relating to your confidence about the Chain Rule

In this exchange, the OLM (Inform) move gives its judgement about the learner’s confidence on
the “chain Rule” topic. This judgement is based on the belief the LM holds about the learner’s
characteristics, belief acquired by accumulating evidence over time (see section 4.4.4). When
challenged about the ground on which the OLM is making its claim, there are many pieces of
“evidence” (i.e. events stored in the LH) that could be used to justify such a decision:

7Or even by the learner, if we assume the existence of a mechanism that allows the learner to justify his/her own
judgment by selecting “adequate” LH events.
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Figure 4.19: Getting evidence from the LH to support the OLM’s judgments

• the performance of the learner on the last exercise (e.g. 7 answers correct for 10 questions)
that led the LM to establish its current belief about the learner’s confidence on the chain
rule;

• all the previous exercises and related learner’s performance, based on which this belief was
reconsidered;

• A previous diagnosis dialogue between the learner and the OLM on this topic of Chain
Rule, whose outcome led to further evidence about the learner’s confidence;

• similar exercises (possibly on a different topic) to which different performances by the
learner are compared and matched for value judgement;

• same exercises with other learners’ performances with which peer-to-peer value judgment
are performed;

• global phenomena such as interpreted behaviour of the learner across session(s);

• etc.

To reply to the challenge issued by the learner, the OLM has now to provide him/her with the
relevant evidence. Several strategies could be used for this purpose.

The first one, and obviously the simplest, will be to simply present the learner with ALL the
evidence gathered by the OLM and let him/her draw his/her own conclusion. The advantage
of this approach is that it does not require any inference or argumentation engine; the drawback
being obviously a lack of control on how to explore the arguments — both for the OLM and the
learner.
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A more elaborate approach is to define and use an argumentation framework, within which
claims and evidence can be presented and argued one by one until an agreement is reach (or not)
by both participants. Each round of the argumentation could reinforce, expand or complement
previous evidence given by the OLM to the learner as long as he/she still does not accept them
or does not understand them or need better explanation for them8.

We propose to treat evidence and argumentation in terms of a multi-layers structure, within
which subsequent layers can be expanded as needed during the dialogue.

There is obviously a chronological dependency between the items of evidence, conveying the
temporal evolution of the beliefs. But this dependency may not be adequate to convince the
learner of the (ir)relevance of the decision made by the OLM.

A further structuring mechanism is the introduction of a strength for the arguments and evidence,
conveying for example the importance of an evidence in the judgment or the “confidence” of the
OLM in making a value judgment from the learner’s performances.

There are good reasons for defining such a framework. First, in a disagree (learner)/justify
(OLM) loop, such a structured argumentation could help the system to manage situations such
as running out of arguments or endless debates and reiteration of the same (weak) arguments
— or, with the opposite purpose, it could help the reinforcement of ideas by addressing which
arguments need to be reiterated again and again.

What is needed here is an argumentation framework similar to Toulmin’s theory of argumenta-
tion (Toulmin, 1959), see figure 4.20.Data ClaimWarrant Qualifier

Backing
Rebutal

Because

UnlessSince Therefore

BackingBecause

Given

Figure 4.20: Stephen Toulmin’s Layout of Argumentation

In brief, “Data” ( or “Grounds”) are the evidence, facts, and information that are the reason for the
claim in the first place — a reasoned beginning; “Claim” is the position on the issue, the purpose
behind the argument, the conclusion that the arguer is advocating; “Warrant” is the component
of the argument that establishes the logical connection between the data and the claim, i.e. the
reasoning process used to arrive at the claim; “Rebuttal” is any exception to the claim presented
by the arguer; “Backing” is any material that supports the warrant or the rebuttal in the argument;
“Qualifier” represents the verbalisation of the relative strength of an argument, its soundness.

8For example, to the question “Why did he die?”, one could first answer “Because his heart stopped” — which is
indeed an evidence of the claim but its relevance may be not enough to convince the learner. A more in-depth argument,
such as “Because the bullet perforated his heart”, may do this job — or may not and, thus, requires more and more
details).
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4.6.3 Dialogue Moves

These dialogue moves9 provide the initial specification of the language which the learner and the
OLM will use to communicate and argue about beliefs and performance. There will be a need
to iterate through different versions, expanding and refining them — especially by taking into
account the organisation of these moves into a general dialogue framework (see section 4.6.4).

Discussion and negotiation will be based mostly on judgements made by the OLM, regarding
knowledge, competence and skills, emotional and motivational states of the learner. We will
refer to them as the topic of discussion. For each of the moves, we sketch the interface between
the various relevant components of LEACTIVEMATH.

4.6.3.1 Learner’s Moves

Here is a list of several dialogue moves the learner can use.

“Show me” “Show me” is the basic request a learner could use to enquire about the sys-
tem’s perception of his/her achievement. The focus for the enquiry could be knowledge, self-
knowledge, affective state, etc. For example:

- show me what you think I know about differentiation
- show me what you think I know about my own self
- show me what you think I can do in the differentiation domain
- show me what you think I can do with my self knowledge
- show me how competent you think I am in mathematical terms

When the OLM receives such a move, a relevant event is added to the LH (indicating that an
inquiry has been made by the learner regarding topic X, see figure 4.21).

Student
INQUIRE

OLM LH
SET

Figure 4.21: The Learner inquires about some Beliefs

“I Agree”/“I Disagree” Such affirmations can be used to seed the values associated with what
is being agreed with. This is a response to something like a “Perhaps” move.

For example:

- I don’t think I know the chain rule (but you seem to think I can)
- I don’t think I am competent with the chain rule (ditto)
- I don’t think I can solve problems with the chain rule (ditto)
- I don’t think I can improve my motivation
- Yes, I do understand the chain rule

An “Agree”/“Disagree” move could be moderated by the learner to express a certain amount of
disagreement, such as:

- I don’t think I am very good at mathematical modelling

9Dialogue Moves refers to the standard logic terminology and do not imply natural language processing. In fact, they
could even be deployed by graphical widgets.
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- I don’t think I am very well motivated
- Yes, I am very confident about my understanding of differentiation

When the OLM receives such a move, a relevant event is added to the LH (indicating that an
agreement or a disagreement has been made by the learner regarding the judgement on a topic
X). An indication of the learner’s decision is also translated into the LM/SM (see figure 4.22).

Student
CHALLENGE

OLM LH
SET

LM / SMSET

Figure 4.22: The Learner Agrees/Disagrees with some OLM Judgments

“I Confirm”/“I Disconfirm” These moves follow the “Can I confirm” move by the OLM, look-
ing for a compromise position on a particular topic. For example:

- I confirm that I think I understand the chain rule very well
- I cannot accept that I understand the chain rule quite well

When the OLM receives such a move, a relevant event is added to the LH (indicating that the
learner accepts or not the compromise on the topic X). Indication of the learner’s decision is also
translated into the LM/SM (see figure 4.23).

Student
CHALLENGE

OLM LH
SET

LM / SMSET

Figure 4.23: The Learner Confirms/Disconfirms some OLM Judgments

“I am Baffled” These moves allows the learner to express his/her confusion regarding what is
going on in the discussion with the OLM. For example:

- I do not understand what we are talking about
- I do not understand how you reach your conclusion
- I do not know where you found this information
- I do not understand why we are talking about this
- I do not understand your role

This broad category will have to be broken down at some point, as it includes moves related
to both general dialogue management (“I do not understand what we are talking about”) and
particular judgement such as refutation or challenge (“I do not understand how you reach your
conclusion”). This last group is an important one for the framework “judgment-evidence” de-
scribed in this document (see section 4.19).

When the OLM receives such a move, a relevant event is added to the LH (indicating the learner’s
confusion on a topic X). Indication of the learner’s decision is also translated into the LM/SM
(see figure 4.24).
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Student
CHALLENGE

OLM LH
SET

LM / SMSET

Figure 4.24: The Learner indicates Confusion about some Stage of the Discussion

“Let’s Move on” These moves allows the learner to stop the current discussion on a topic and
start a new line of inquiry. For example:

- I want to finish with this
- I would like to come back to this later
- I never want to revisit this

When the OLM receives such a move, a relevant event is added to the LH (indicating the learner’s
confusion on a topic X). Indication of the learner’s decision is also translated into the LM/SM
(see figure 4.25).

Student
CHALLENGE

OLM LH
SET

LM / SMSET

Figure 4.25: The Learner asks for a Change of the Current Discussion Topic

4.6.3.2 OLM’s Moves

Here are some dialogue moves that can be made by the OLM.

“Perhaps” This move is the main dialogue mean of the OLM, presenting to the learner its
judgement on a topic. For example:

- Perhaps you know the chain rule very well
- Perhaps you are very good at differentiating
- Perhaps you are quite confident about using the chain rule

When asked to give its judgement on a topic, the OLM retrieves the relevant information from
the LM/SM and presents it to the learner. A relevant event is also added to the LH (indicating
that a judgement has been made on topic X), see figure 4.26.

“Here Is” This move is the complement of the “Perhaps” move and is only used when the
learner challenges the judgement on a topic or is confused about how the OLM has made this
decision. For example:

- Here is the evidence relating to your knowledge of the chain rule
- Here is the evidence I have about what you know about yourself
- Here is the evidence I have about what you can differentiate
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Student
LM / SM /

LH
INFORM

OLM
GET

LH
SET

Figure 4.26: The OLM informs the Learner about the Requested Belief(s)

- Here is the evidence I have about your confidence

The OLM then presents to the learner the evidence used to support this judgement. Evidence
will be mostly gathered from the events stored in the LH and made understandable by retrieving
any relevant information from the LM/SM and the MBase to produce a human-readable account
(see figure 4.27).

Student

LM/SM

JUSTIFY

GET

OLM MBase
GET

LH
SET

LH
GET

Figure 4.27: The OLM justifies its Decisions by Retrieving the Evidence used to Infer the Judgement

“Can I Confirm” This move is an attempt by the OLM to conclude a line of enquiry by suggest-
ing to the learner a commonly agreed position and by seeking a confirmation of it. For example:

- So we agree that you understand the chain rule well
- So we agree you are quite competent at mathematical modelling
- So we agree you are very good at differentiation

A relevant event is added to the LH (indicating that a proposal for agreement on topic X have
been presented to the learner), see figure 4.28.

Student
SUGGEST

OLM LH
SET

Figure 4.28: The OLM proposes to come to an Agreement on a Topic

“Unravelling Confusion” This move is an answer to the “I am baffled” of the learner. For
example:

- We are talking about this since knowing the chain rule is a precursor to being able to
differentiate functions of the kind we are being asked to do

- I believe you are quite good at mathematical modelling because you told me so yester-
day and your performance is as good as yesterday
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- I think you will need to read about the chain rule or ask your teacher but we could shift
to discuss ...

- I am your electronic assistant, I am here to help you increase your understanding and
learn differentiation more effectively

This move is suffering the same problem as the “I am baffled” move, i.e. too broad a range of
issues to deal with. Both moves will have to be broken down further. In any case, a relevant
event is added to the LH (indicating that a suggestion has been made to clarify the confusion on
topic X), see figure 4.29.

Student
SUGGEST

OLM LH
SET

Figure 4.29: The OLM provides Support to the Learner to unravel the Current Confusion

“Finish with Topic” This move is similar to the “Lets move on” of the learner, but under OLM’s
initiative. We might see this as a compound of “Summary” and “Where we are going”. For
example:

- So we are agreed that you understand the chain rule quite well - we move on/will
revisit some time soon

- So we agree to differ about your competence at mathematical modelling — we move
on/will revisit some time soon

- So I’d like to discuss the chain rule now and return to this later
- So I’d like to discuss your confidence now

Student
SUGGEST

OLM LH
SET

Figure 4.30: The OLM proposes to the Learner to end this Line of Discussion

“Can I Suggest” In some circumstances (such as eliciting a disagreement or address the de-
sire/needs of the learner), the OLM may be in a position to suggest to the learner to perform
some exercises or access some content. For example:

- Since we disagree about your competence at mathematical modelling, maybe you could
perform this exercise to clarify the situation

- If you want to improve your competency in mathematical modelling, I suggest you
have a go with this series of exercise.

Student
SUGGEST

OLM LH
SET

Figure 4.31: The OLM proposes to the Learner to perform an Exercise to clarify a Situation

4.6.4 Interactive Diagnosis

The interactive diagnosis, i.e. a dialogue between the OLM and the learner, is managed by or-
ganising the dialogue moves specified above in a Finite State Transition Network (FSTN) or any
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equivalent mechanism. This will help us to determine if we have enough (or too many) dialogue
moves and how to construct the interface needed for the using the moves. The following is an
overview of some parts of such a transition network (figure 4.32).

SHOW
ME

START
WITH
TOPIC

MOVE
ON

START

SLRN

SOLM

Figure 4.32: Starting a Topic with Mixed Initiative

The central part of the interactive diagnosis is based on the combination of “Perhaps” and
“Agree/Disagree” moves (see figure 4.33), i.e. the presentation by the OLM of a judgement on
the learner performance and its acceptance or refutation by him/her.

PERHAPS 
AGREE

DISAGREE

BAFFLED

HERE
IS

HERE
IS

SLRNSOLM SOLM

SOLM

SOLM

START

MOVE
ON

FINISH
TOPIC START

FINISH
TOPIC START

CAN
CONFIRM

SLRN

Figure 4.33: Interactive Diagnosis on the OLM Judgement

When the learner refutes the OLM’s judgement, two possibilities can be considered. First, as-
suming the learner is the ultimate decision-maker in the process, the OLM could immediately
close this line of discussion in an inconclusive manner and suggest to the learner to come back to
it later (expecting further evidence or a change in the learner’s opinion).

Another approach (as depicted in figure 4.33) could be for the OLM to submit more refined
evidence of its judgment and hope for approval at some point. But it is possible that there will
be an “endless argument” between the learner and the OLM. With a “depth-control” mechanism
guaranteed by the framework suggested in section 4.6.2, we can ensure that the discussion will
reach an inconclusive end after a couple of exchanges, i.e. when the OLM runs out of evidence.

When the learner agrees with the OLM’s judgment, the OLM can ask him/her for a confirmation
of the judgement (see figure 4.34), close this line of investigation in a conclusive way and move
on to a different topic. This topic could potentially be reactivated in the future if further evidence
comes up.
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SOLM

CAN
CONFIRM

SOLMCONFIRM

SOLM
DIS-

CONFIRM

START

FINISH
TOPIC

FINISH
TOPIC

SLRN

START

MOVE
ON

Figure 4.34: Closing a Topic with a Conclusive/Inconclusive Outcome

4.6.5 A Graphical User Interface for the OLM

Due to the complexity of the interactive diagnosis and the requirements for graphical external-
isation of the Learner Model, browser-based mechanisms such as DHTML or embedded applet
are ruled out for implementing the Graphical User Interface (GUI). Rather, the OLM will be de-
signed as a Java stand-alone application, using extensive GUI libraries like SWING or SWT. The
exact content and layout of the GUI will be specified in the next three months but an illustration
of its potential can be seen in figure 4.35.

Its deployment and integration within the architecture of LEACTIVEMATH will be insure by pro-
tocols such as Java Network Launching Protocol (JNLP) and Java Web Start (JWS), insuring a
secure communication with the various components (in particular the LM/SM and the LH) and
a smooth and transparent deployment for the users.

Appropriate Java technology will be used to ensure that the OLM GUI meets the requirements
on internationalisation of LEACTIVEMATH user interface.
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LeAM OLMLeAM OLM

Status bar HELP ACT

Competencies

Dialogue Moves

Sam (SHOW ME): Show me what you think of me about Chain Rule
OLM (HERE IS): Here is the information about you on Chain Rule
Sam (DISAGREE): I don’t think I am confident about Chain Rule but you seem to think I am
OLM (JUSTIFY): Here is the evidence relating to your confidence about Chain Rule

I Disagree...Show Me ...I Agree …I Confirm ...I’m Baffled ... I Dismiss ...Let’s move on

CAPEsMotivationTopics
Chain 
Rule

Competency

Math
Thinking
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Rule

Motivation
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Rule

Differentiation
Rules

Metacog.

...

Figure 4.35: A possible GUI for the OLM
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Chapter 5

Conformance

The specification of the Extended Learner Model, as required by the workplan for LEACTIVE-
MATH, conforms to the requirements generated by the project (Deliverable D5 (LeActiveMath
Partners, 2004c)). For the benefit of the reader, all requirements referenced in this section can be
found in Appendix C.

5.1 Satisfied Requirements

5.1.1 Extended Learner Model

The architecture of the xLM and its communication framework satisfy requirements 3.5, 4.13, 5.3,
5.4, 4.181, 4.19 and 6.22.

5.1.2 Learner History

The specification of the LH is in conformance with the following requirements:

• The LH will subscribe to several components that track the learner’s actions, thus building
up a history of learner’s actions (Requirement 5.3).

• Every learner action that is interesting to the xLM is stored in the Learner History before it
is relayed to the other xLM components ensuring that every inference made in the xLM is
justifiable by the learner’s actions that are recorded in the LH (Requirement 5.4).

5.1.3 Learner Model

The specification of the LM, described in section 4.4, meets requirements 4.17, 5.9, 7.3, 5.1 and
5.2.

5.1.4 Situation Model

The specification of the SM is in conformance with the following requirements:

• Requirement 5.1 and the related Requirement 4.19 have a contribution from the SM as it
utilises information stored by the LM as well as information related to the situation in order
to support pedagogical decisions made by the DM and the TC (see section 4.5.1).

• Requirement 5.11 and Requirement 6.2 will be met, and Requirement 5.9 will be partially
met, by the provision of the values for autonomy and approval (see section 4.5.3). For
Requirement 5.9, this will require that the DM and the TC have strategies/tactics that can
make use of these values.

1xLM provides the needed access to instructionally relevant information about the learner.
2xLM provides the needed access to its components.
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5.1.5 Open Learner Model

The specification of the OLM is in conformance with the following requirements:

• Requirements 5.4, 5.7 and 6.6 are met by the definition of interaction acts described in this
document (see section 4.6.3).

• Requirements 5.5, 5.6 and 5.8 will be met by the provision of a GUI for the OLM and of
navigation acts to the learner.

• Requirement 5.10 is partially met by the nature of the interactions between the OLM and
the learner.

5.2 Assumed Requirements

Updating the LM, as described in section 4.4.4, assumes satisfaction — by other LEACTIVEMATH
components — of the requirements 4.153, 2.3, 2.5, 3.64, 4.21, 4.22, 5.3, 6.5, 7.4, 7.5, 7.7 and 7.8.

5.3 Partially Unsatisfied Requirement

• The recording and interpretation of keyboard-stroke and mouse-movement mentioned in
requirement 5.3 is no longer considered by WP4. Justification for this decision can found in
section 2.3 .

3Actually, it assumes the existence of an ontology of learning objects.
4xLM requires the reverse functionality; that is, given a set of learning object identifiers, DK can derive the corre-

sponding metadata set.
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Appendices

Appendix A contains a list of the Conceptual and Procedural Errors (CAPEs, see section 4.4.2.5)
that have been collected from the content currently developed by WP6 (forthcoming Deliverables
D18 and D19). In its actual form, it’s a list organised by the domain concept associated with the
exercises in which the CAPEs was identified.

Appendix B contains a description of the API for the Extended Learner Model. Its purposes,
in line with the architectural decisions detailed in section 4.1, is to highlight to other LEAC-
TIVEMATH components the methods and events available for communicating with the xLM as a
whole.

Appendix C is an extract of Deliverable D5 (LeActiveMath Partners, 2004c) and contains, for the
convenience of the reader, all the requirements related to the xLM, whose conformance have been
addressed in section 5.
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Appendix A

Conceptual and Procedural Errors identified in the
LEACTIVEMATH content

Topic Conceptual and Procedural Errors
Difference quotient and derivative

Average slope of dif-
ferent curves • Belief that the average slope of two curves measured between

the same point cannot be the same

The total average
slope of a curve • Exchanged nominator and denominator of the difference quo-

tient
• Wrong sign
• Forgot yP in the difference quotient
• Forgot yQ in the difference quotient
• Forgot xP in the difference quotient
• Forgot xQ in the difference quotient
• Difference quotient is not yP/xP
• Difference quotient is not yQ/xQ
• Fraction not simplified, in particular: just the definition, with-

out evaluating it
• Exchanged yP and xQ in the difference quotient
• Exchanged yP and xQ and nominator/denominator in the dif-

ference quotient
• Forgot denominator of difference quotient
• An overall factor like a in f (x) = a ∗ g(x) is forgotten or only

applied to either f (x) or f (x0)

Derivation: Comprehension and application
Intersection between
functions and their
derivatives

• The derivative is not considered to be a function as well

Computing the derivatives of various functions
The derivative of con-
stant functions • The derivative of a constant function f (x) = c is f ′(x) = c ∗

x−1 or −c ∗ x−1
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Topic Conceptual and Procedural Errors
The derivative of
power functions
f (x) = a ∗ xn

• Wrong sign, especially for negative a or n
• Forgot the factor a: f ′(x) = (n− 1) ∗ xn

• Forgot to lower the exponent: f ′(x) = a ∗ n ∗ xn

• Forgot the exponent at all: f ′(x) = a ∗ n ∗ x
• Raising the exponent instead of lowering it: f ′(x) = a ∗ n ∗

xn+1, especially for negative n
• Forgot the factor n
• Buggy rule: f ′(x) = a ∗ (n− 1) ∗ xn

• For negative n: f ′(x) = a ∗ (x + n) ∗ xn−1 = a ∗ (1− n/x) ∗ xn,
being a buggy rule of the quotient rule, due to rewriting f as
f (x) = 1/x−n

The derivative of sin
• wrong sign: sin′(x) = −cos(x)
• buggy rule: sin′(x) = sin−1(x)

The derivative of cos
• wrong sign: cos′(x) = −sin(x)
• buggy rule: cos′(x) = cos−1(x)

The derivative of tan
• buggy rule: tan′(x) = cot(x)
• wrong sign: tan′(x) = −1/cos2(x)
• buggy rule: tan′(x) = cos2(x)
• buggy rule: tan′(x) = 1/sin2(x)
• buggy rule: tan′(x) = −1/sin2(x)

The derivative of cot
• buggy rule: cot′(x) = tan(x)
• buggy rule: cot′(x) = −tan(x)
• wrong sign: cot′(x) = −1/sin2(x)
• buggy rule: cot′(x) = sin2(x)
• buggy rule: cot′(x) = 1/cos2(x)
• buggy rule: cot′(x) = −1/cos2(x)

Rules of differentiation
Sum rule

• forgot one of the terms
• forgot to differentiate one of the terms
• wrong sign in one of the terms (mostly also contained in the

buggy rules for the single terms)
• differentiation errors in the single terms
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Topic Conceptual and Procedural Errors
Product rule for
f (x) = u(x) ∗ v(x) • forgot one of the terms, e.g. f ′(x) = u′(x) ∗ v(x)

• forgot to differentiate one of the terms, e.g. f ′(x) = u′(x) ∗
v(x) + u(x) ∗ v(x)

• wrong sign in one of the terms (mostly also contained in the
buggy rules for the single terms), e.g., f ′(x) = u′(x) ∗ v(x)−
u(x) ∗ v′(x)

• multiplying the single derivatives: f ′(x) = u′(x) ∗ v′(x)
• buggy rule for triple (or more) products: f ′(x) = u′(x) ∗

v′(x) ∗ w(x) + u′(x) ∗ v(x) ∗ w′(x) + u(x) ∗ v′(x) ∗ w′(x)
• differentiation errors in the single terms, see there

Quotient rule for
f (x) = u(x)/v(x) • forgot one of the terms, e.g. f ′(x) = u′(x)/v(x)

• forgot to differentiate one of the terms, e.g. f ′(x) = (u′(x) ∗
v(x) − u(x) ∗ v(x))/v(x)2 or f ′(x) = (u(x) ∗ v(x) − u(x) ∗
v′(x))/v(x)2

• wrong sign in one of the terms (mostly also contained in the
buggy rules for the single terms), e.g. f ′(x) = (u′(x) ∗ v(x) +
u(x) ∗ v′(x))/v(x)2

• dividing the single derivatives: f ′(x) = u′(x)/v′(x)
• differentiation errors in the single terms, see there

Chain rule for f (x) =
g(h(x)) • buggy rule: f ′(x) = g′(x) ∗ h′(x)

• forgot the inner derivative, f ′(x) = g′(h(x))
• forgot the outer derivative, f ′(x) = h′(x)
• mixing both derivatives, f ′(x) = g′(h′(x))
• forgot to differentiate one of the terms, e.g. f ′(x) = g(h(x)) ∗

h′(x)
• combination of the first two buggy rules, e.g. f ′(x) = g(x) ∗

h′(x) or f ′(x) = g′(x) ∗ h(x)
• mixing with the product rule: f ′(x) = g′(x) ∗ h(x) + g(x) ∗

h′(x) or f ′(x) = g′(h(x)) ∗ h(x) + g(h(x)) ∗ h′(x)
• differentiation errors in the single terms, see there

curve scetching
horizontal functions of
a function • Computation with f (x) = 0 instead of f ′(x) = 0
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Appendix B

Interface to the Extended Learner Model

This section describes the interface of the Extended Learner Model. As specified in section 4.2,
access to functionalities of XLM subcomponents will be thought a single front-end. The descrip-
tion of events, data structures, input and output APIs conform to the syntax used in the Open
Architecture document (Deliverable D8 LeActiveMath Partners (2004b)).

B.1 Implementation details

From a implementation point of view, the xLM manager introduced in Figure 4.2 is a singleton
that serves two purposes :

(i) as a facade object for xLM API,
(ii) as a local event publisher and event forwarder for public events (both subscription and

publisher).

As a facade object, xLM Manager creates instances of each xLM component and holds a reference
to it, and it is configurable as a LEACTIVEMATH component. Since currently many information
request about the learner are made through a central User object, this should increase the inde-
pendency of xLM inside LEACTIVEMATH.

As a local publisher and forwarder, xLM Manager subscribes itself to all learner-related events at
the central LEACTIVEMATH Event Manager, whereas all xLM components subscribe as listeners
to xLM Manager (instead of subscribing to the LEACTIVEMATH Event Manager). Hence xLM
Manager forwards all incoming events from the rest of LEACTIVEMATH to each component that
has subscribed to it. Finally, xLM Manager is also the place where each xLM component publish
their own local and public events. Local events are published in the same way as public events,
but they are not forwarded to the LEACTIVEMATH Event Manager and hence are not visible
outside xLM.

B.2 Types and Data Structures

Here is a description of all the public types and data structures used with the API described in
this document.

• learnerId : String
represents the (unique) identifier of a learner (i.e. user).

• contentId : String
represents the (unique) identifier of a (MBase) piece of content.

• topicId : String
represents the (unique) identifier of domain topic (or an association) in a learner model.
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• competencyId : String
represents the (unique) identifier of a competency in a learner model. It can be one of
the following values (following the definition for the exercise metadata, see LeActiveMath
Partners (2004d)): think, argue, model, solve, represent, language, communicate, tools,
none (indicating no competency selected from this level) or competency (indicating the
combination of all eight competencies).

• motivationId : String
represents the (unique) identifier of a motivation factor in a learner model. It can be one
of the following values: effort, confidence, interest, none (indicating no motivational
factors selected from this level) or motivation (indicating the combination of all motivation
factors).

• affectId : String
represents the (unique) identifier of an affective factor in a learner model. It can be one of
the following values: satisfaction, pride, liking, anxiety, none (indicating no affective
factor selected from this level) or affect (indicating the combination of all affective factors).

• motivAffectId : String
represents the combination of affect and motivation identifiers. This identifier is mostly
used when querying the Learner Model for a particular belief, as motivation and affect can
never be requested at the same time (see the description of the Learner Model, section 2.4).

• metacogId : String
represents the (unique) identifier of a metacognitive ability in a learner model. It can be one
of the following values: monitoring, control, none (indicating no metacognitive ability
selected from this level) or metacognition (indicating the combination of all metacognitive
abilities).

• capesId : String
represents the (unique) identifier of a Conceptual and Procedural Error in a learner model.

• beliefId : String
represents the (unique) identifier of a belief in a learner model. Uniqueness of this
identifier is guaranteed by its indexing based on the dimensions the belief is about,
i.e.<metacogId,motivAffectId,competencyId,topicId>.

• olmMoveId : String
represents the identifier of an interaction move supported by the Open Learner Model. It
can be one of the possible value: showme, agree, disagree, confirm, disconfirm, baffled,
moveon, perhaps, hereis, canconfirm, unravelling, finishtopic, suggest.

• Scope : Class
represents the extent the domain is used when combining factors from the upper dimen-
sions of the Learner Model. It can one of the default values representing common-usage
scopes: session (indicating all domain topics used since the learner logged in), book (in-
dicating all topics available in the currently loaded book) and domain (indicating all topics
included in the Learner Model) 1.

In order to ensure a greater flexibility in specifying the scope on which beliefs are combines,
Scope can also be a list of individual topics (i.e.List<topicId>).

• LearnerModel : Class
represents the whole Learner Model (i.e. the accumulation of all beliefs for all topics) for a
given learner.

1This is an initial list which includes the basic scopes that we think will be commonly used by the system. If the need
for further definitions arise, we will obviously amend it.
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• Belief : Class
represents the distribution of a learner’s level in one of the dimension of the LM (i.e. com-
petency, motivation, affect, metacognition).

• BeliefCluster : Class
represents the aggregation of all Belief related to one particular point of view (i.e. one
particular domain topic, one particular competency, etc.).

• Face : Class
represents a combined autonomy and approval values.

• Evidence : Class
represents the (organised) evidence supporting a particular belief.

• Map : Class
represents a generic storage device containing nodes inter-connected by associations. It is
mainly used to store the various map used to define the dimension of the Learner Model,
i.e. the subject domain (DomainMap), the competencies (CompetenciesMap), the motivation
factors (MotivationMap), the affective factors (AffectMap) and the metacognitive abilities
(MetacognitionMap).

B.3 Events

B.3.1 Event Tags

• ExtendedLearnerModelTag [Inherits: Application]
Events are associated to the Extended Learner Model (xLM)

• LearnerModelTag [Inherits: ExtendedLearnerModelTag, User]
Events are associated to a Learner Model (LM) for a given learner

• LearnerHistoryTag [Inherits: ExtendedLearnerModelTag, User]
Events are associated to a Learner History (LH)

• OpenLearnerModelTag [Inherits: ExtendedLearnerModelTag, User]
Events are associated to a learner’s interaction with the Open Learner Model (OLM)

• SituationModelTag [Inherits: ExtendedLearnerModelTag, User]
Events are associated to the Situation Model (SM) of a given learner in a given topic

B.3.2 Public Published Events

Public events are broadcasted to all LEACTIVEMATH components.

• XlmTopicAdded (Attr: learnerId,topicId) [Tags: LearnerModelTag]
A new domain topic has been added to the LM of a learner (this does not mean that beliefs
on this topic have been already defined or revised, see XlmBeliefUpdated)

• XlmBeliefUpdated (Attr: learnerId,beliefId) [Tags: LearnerModelTag]
The beliefs about a particular topic have been revised
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B.3.3 Private Published Events

Private events are restricted to the components within the xLM and are mainly used for internal
usage.

• XlmStarted (Attr: ) [Tags: ExtendedLearnerModelTag]
The xLM has been started

• XlmStopped (Attr: ) [Tags: ExtendedLearnerModelTag]
The xLM has been stopped

• XlmUserAdded (Attr: ) [Tags: ExtendedLearnerModelTag]
A new user has been added in xLM (i.e. LH and LM)

• XlmUserRemoved (Attr: ) [Tags: ExtendedLearnerModelTag]
A user has been removed from xLM (i.e. LH and LM)

• XlmOLMMove (Attr: learnerId,beliefId,olmMoveId) [Tags: OpenLearnerMod-
elTag]
The OLM send this message to indicate that a dialogue move olmMoveId has been played
by the learner learnerId, regarding the belief beliefId. The nature of the move is
specified by olmMoveId.

B.4 Listened Events

The following are events listened to by the xLM.

From LeAM Front-End:

• PagePresented keeping track of the user’s position, analyzing total time spent on page

• ItemPresented updating the LM.

• UserBookCreated tracking topics of interest to the user

• UserBookDeleted cleaning operations.

From the User Manager:

• UserCreated creation of a new learner model

• UserDeleted tidying up the LM/SM, e.g. removing saved learner models from disk

• UserLoggedIn caching/loading operations in the LM/SM, e.g., loading a learner model
from disk.

• UserLoggedOut storage operations in the LM/SM, e.g., writing a learner model to a file.

• UserPropertyChanged tracking property changes in the User Profil

From the Exercise Manager:

• ExerciseStarted Updating SM, e.g., start watching the time spent on the exercise.

• ExerciseFinished updating the LM/SM, e.g., update the LM’s beliefs about the learner
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• ExerciseStep Updating the LM/SM, e.g., updating the LM’s beliefs about the learner

• ExerciseHelpRequested Updating the LM/SM, e.g., updating the LM’s beliefs about the
learner

From the Dictionnary:

• DictSearch Tracking user’s interests

B.5 Requirements from L EACTIVEMATH

• getDomainTopics(learnerId) −→ Map
This method is used by the LM for retrieving a map of the subject domain including all
domain topics and associations associated with content the learner is currently accessing
(see section 4.4.2.1 for an explanation about the domain topics and their relation with the
content).

B.6 API

• createLearnerModel(learnerId) −→ void
This method needs to be called when a new user learnerId is created, so that a LM is
immediately initialised for the user.

• destroyLearnerModel(learnerId) −→ void
This method needs to be called when a user learnerId is deleted from the system.

• doesLearnerModelExist(learnerId) −→ boolean
This method is called to check if a LM does already exist for the user learnerId.

• getLearnerModel(learnerId) −→ LearnerModel
This method return a complete copy of the LM for the user learnerId.

• alreadySeen(learnerId,contentId) −→ boolean
This method returns true if the user learnerId has already seen the item contentId, false
otherwise.

• getNumEntries(learnerId,includeFilter,excludeFilter) −→ boolean
This method returns the number of events stored in the LH that match the includeFilters
but do not match the excludeFilters.

• getHistoryEntries(learnerId,includeFilter,excludeFilter,
startIndex,maxNum) −→ List

This method returns a List of maxNum LH events for the given learner that match the in-
cludeFilters but do not match the excludeFilters, starting at the index startIndex of
the full result list.

• fetchEvent(eventID) −→ Event
This methods returns the event with the specified ID from the LH.
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• getFace(learnerId,aut,app) −→ Face
This method returns the current values of autonomy and approval calculated by the sit-
uational model based on the relevant information from the Learner Model of the user
learnerId and based on the relevant interactions. aut and app refer to the recommended
amount of autonomy approval that the learner should be given in the current situation.

• getCAPEs(learnerId,topicId) −→ List<capesId>
This method returns the list of CAPEs identifiers that have been diagnosed for the learner
learnerId on the domain topic topicId.

• getSummaryBelief(learnerId,metacogId,motivAffectId,
competencyId,topicId) −→ float

getSummaryBelief(learnerId,metacogId,motivAffectId,
competencyId,Scope) −→ float

This method return the numerical summary of a belief (see section 4.4.3) about the learner
learnerId. Which belief to request is determined by using the appropriate quadruplet for
<metacogId, motivAffectId, competencyId, topicId>.
For example, getSummaryBelief(learnerId, none, none, think, chain_rule) re-
trieves the summary of the belief about the mathematical competency of the learner
learnerId on the chain rule, where as getSummaryBelief(learnerId, none, motiva-
tion, none, chain_rule) retrieves the summary of the level of motivation of the learner
learnerId on the chain rule.
Alternatively, a Scope for combining beliefs over the domain dimension can be given in-
stead of a topicId.

• getBelief(learnerId,metacogId,motivAffectId,
competencyId,topicId) −→ Belief

getBelief (learnerId,metacogId,motivAffectId,
competencyId,Scope) −→ Belief

Same principle as the method getSummaryBelief above, except that getBelief returns the
full four-scale distribution of the belief (see section 4.4.3).

• getBeliefCluster(learnerId,metacogId) −→ BeliefCluster
getBeliefCluster(learnerId,motivAffectId) −→ BeliefCluster
getBeliefCluster(learnerId,competencyId) −→ BeliefCluster
getBeliefCluster(learnerId,topicId) −→ BeliefCluster
getBeliefCluster(learnerId,Scope) −→ BeliefCluster
getBeliefCluster(learnerId,metacogId,motivAffectId,

competencyId,topicId) −→ BeliefCluster
getBeliefCluster(learnerId,metacogId,motivAffectId,

competencyId,Scope) −→ BeliefCluster
This method returns all individual beliefs connected to the node specified by the parame-
ter(s).
For example, getBeliefCluster(learnerId, none, none, none, chain_rule) returns
all the beliefs that are connected to the domain topic "chain rule", whereas getBelief-
Cluster (learnerId, none, none, think, chain_rule) returns those only connected
to "mathematical thinking about the chain rule".

• getEvidence(learnerId,beliefId) −→ Evidence
getEvidence(learnerId,BeliefCluster) −→ Evidence
This method is called to retrieve the evidence on a given belief beliefId about the learner
learnerId (or on a belief cluster BeliefCluster, by combining the evidence of all beliefs
in the cluster).
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• launchOLM(learnerId) −→ void
launchOLM(learnerId,topicId) −→ void
This method is called to launch the OLM for the learner learnerId. Alternatively, it is
possible to specify which negotiation subject topicId the OLM will be initialised with.

• postSuggestion(learnerId,contentId) −→ void
postSuggestion(learnerId,Criteria) −→ void
Calling postSuggestion send a suggestion to the TC that a particular activity associated
with a specific piece of content should be presented to the learner as the next best choice.
The content could either be specified directly (by its identifier contentId) or the Tutorial
Component can be left to choose using some Criteria such as difficulty, type of content,
subject, etc.
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Appendix C

Requirements related to the xLM

C.1 Knowledge Representation

Requirement 2.3 Metadata have to characterise competencies - learning activities such as
model, compute and test.

Supports

• Adaptation to competency-based learning scenario.

• Generation of well-balanced courses in terms of competencies.

Because TC can choose and assemble appropriate learning objects.
Check-rule Check exemplary learning objects and overall content.
Issues

• More annotation means more work for authors.

• Complex exercises may have to be split.

• Not yet in all standards.

Requirement 2.5 Metadata should characterise representation forms (verbal, graphical, nu-
meric, symbolic) and abstractness.

Supports Adaptation to cognitive variables.
Because If learner does not understand one form, another form can be chosen for

or by her.
Check-rule Check content.
Issues

• Work for authors.

• Full automatic adaptation to learner style is questionable.

• If abstractness will be used it has to be exactly defined (maybe it de-
pends on learning context, etc.).

©LEACTIVEMATH Consortium 2005 Page 119 of 133



Deliverable D10
Student Model Specification

LEACTIVEMATH (IST-507826)

C.2 General Technical Requirements

Requirement 3.5 Components need to be accessible by standard communication protocols
such as XML-RPC.

Supports Communication between separate modules and reliability of the compo-
nents.

Because Standards should be used.
Check-rule Proof of existence.
Issues Performance issues when communication of the net.

Requirement 3.6 Query functionality: components of LEACTIVEMATH can query the
knowledge base(s) for items with particular metadata, types, (multiple)
relations. It returns an ID or a list of IDs.

Supports Separation of the functionalities of the different LEACTIVEMATH compo-
nents.

Because Different components (TC, DM, evaluation) will need information from the
knowledge base(s) and LM/SM.

Check-rule Check architecture.
Issues Mapping between ontologies may be necessary.
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C.3 Tutorial Component

Requirement 4.13 Allow for reactivity: tutorial component should react to learner’s progress
and problems.

Supports Individual needs of the student.
Because Course generation (which happens before the student accesses the course)

may be based on assumptions that change during learning.
Check-rule Test with small group of students (reactivity vs. non-reactivity).
Issues

• Changes to the course have to be indicated to the learner.

• Reactivity may create navigation problems.

Requirement 4.15 Need ontology of instructional objects.
Supports

• Integration of third-party content.

• Provides adequate level of abstraction for authors/learners to talk
about learning materials.

Because There exist many knowledge representations of e-learning content and us-
ing a shared ontology supports integration. Users do not want to know
about internal knowledge representations.

Check-rule Check: can the learning material be described by the ontology? Do users
understand the ontology?

Issues

• Semantics of ontologies is partly not properly defined.

• Mapping of ontologies may be ambiguous.
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Requirement 4.17 The TC offers scenarios that target competencies.
Supports Competency-level pedagogy as used in PISA and other studies.
Because LEACTIVEMATH should be able to conform with didactic standards.
Check-rule Compare results with national curricula and courses that comply with such

standards.
Issues

• Formalisation and encoding of competency standards.

• Needs appropriate content.

• Variation in different European countries (has to be discovered by
Augsburg in the first place).

Requirement 4.18 The TC needs to have access to all instructionally relevant information
about the user.

Supports Adaptivity.
Because Without information about the user, the TC cannot provide adequate adap-

tations.
Check-rule
Issues

• The relevant information includes the learner’s current knowledge
state, her preferences, her history, her learning/cognitive style, mis-
conceptions, static profile and traits.

• We may need for an ontology similar to the ontology of instructional
objects in case we want to switch between different learner models
that use different representations of individual information.
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Requirement 4.19 Action selection and presentation is determined by the TC (and DM) which
in turn are informed by the LM/SM.

Supports Adaptation of content and form of interaction.
Because

• Tutorial actions should depend on the current situation.

• Guidance and encouragement (autonomy and approval) depend on
such variables.

• Factors such as exercise difficulty, achievement and confidence are
not independent of each other.

Check-rule Sensitivity study of the effect of varying factor values on content choice,
expert evaluation by teachers.

Issues

• Operational definitions of factors; defining dependencies between
factors.

• Determine appropriate set of pedagogical and communicative strate-
gies and other actions.

• Ratings of possible actions and strategies.

• Generation of actions and application of strategies by TC.
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C.4 Assessment Tool

Requirement 4.21 Assessment tool should be able to run a variety of exercise types and exer-
cises with several competencies.

Supports Diagnosis of different competencies.
Because If MCQs are used only, then assessment of knowledge and competencies is

limited.
Check-rule
Issues

• May require major changes to Siette.

• Currently, Siette is envisioned as assessment tool only rather than as
’the exercise system’ of LEACTIVEMATH.

Requirement 4.22 Integration of assessment tool into LEACTIVEMATH and communication
with other components (learner model, tutorial component).

Supports A single learning environment with several services.
Because Initialises learner model, test can be requested by tutorial component.
Check-rule Architecture and test.
Issues

• Translation of data structures.

• Communication protocol.

• Changes in Siette.

• Assessment may cause replanned curriculum.
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C.5 Related to the Extended Learner Model

Requirement 5.1 The learner model (LM/SM) will feature beliefs about the learner’s knowl-
edge, skills, competencies, competency levels, academic interests, media
competencies, affective and motivational states.

Supports The selection of pedagogical strategies and tactics to support the learner’s
progress.

Because Other components of the system, such as the DM and the TC can utilise
these beliefs to adapt the available options and to discuss matters with the
learner more appropriately.

Check-rule The existence of the LM, whereas the quality of the beliefs will be checked
by some appropriate empirical method.

Issues

• The selection of particular aspects to hold beliefs on.

• The usual problems of maintaining consistency and updating the
learner model.

©LEACTIVEMATH Consortium 2005 Page 125 of 133



Deliverable D10
Student Model Specification

LEACTIVEMATH (IST-507826)

C.6 Related to the Learner History

Requirement 5.2 The LM will need to access the LH to analyse the past history of interaction.
Supports Looking for patterns in the interaction.
Because We want to detect the learner’s shifts in behaviour and determine, if these

are indicate learning or something retrograde.
Check-rule The proof will be in terms of the patterns that can be detected reliably so

checking could be via simulating students learning with LEACTIVEMATH.
Issues Some patterns may be time-dependent so we need the LH with sufficiently

accurate time stamped data.

Requirement 5.3 The LM will have access to time stamped records of learner behaviour in-
side sessions, ranging from some low-level interface events to high level
interpretations of learner behaviour (such as content review and perfor-
mance at exercises).

Supports Derivation of relevant features and patterns in LM which, in turn provide
support for system adaptation to learner needs.

Because Learner’s shifts in behaviour needs to be detected as well reasons for the
beliefs in LM.

Check-rule Empirical tests to find out whether records are appropriate and sufficient
to infer relevant information and patterns.

Issues

• Low-level of action may need to be recorded at client side.

• Interfaces needed for the LM to access this information.

• There may be problems with translating from low-level events to
higher-level ones.

Requirement 5.4 Updates to the LM beliefs should be supported by information stored in
the LH.

Supports Justification of the learner model beliefs by learner behaviour.
Because Transparency is very important for acceptance by students and teachers.
Check-rule The explicit representation of the interpretation of the information in the

LH as well as the provision of this evidence when necessary (in the open
learner model).

Issues

• The design of justifiable interpretation.

• Depends on how much explanations the (open) learner model is sup-
posed to provide.
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C.7 Related to Open Learner Model

Requirement 5.5 The OLM will be able to present the learner with beliefs about the learner’s
knowledge, skills, competencies, competency levels, academic interests,
media competencies, affective and motivational states.

Supports The learner thinking about what they know, their interests, preferences,
competencies, affective and motivational states, promoting in this way the
development of metacognitive skills.

Because A learner can reflect on the domain being learnt, as well as on their affec-
tive state and motivation for learning, acquiring in this way metacognitive
knowledge and skills. In addition, the open learner model may be a way
for learners helping the system to improve its learner models.

Check-rule The existence of the corresponding interfaces, as well as qualitative semi-
structured interviews which may show the effects on learners.

Issues The possibility that the learner would consider the learner model too inac-
curate, it has to be decided what should be accessible by learners and the
extent and mechanisms by they can alter the learner model.

Requirement 5.6 The open learner model provides the learner with a user interface(s) for
displaying and manipulating each of the various aspects of the learner’s
model properly (e.g. student’s domain understanding, affective state, mo-
tivation, etc.).

Supports Focusing the student on different aspects of her learning.
Because It would be confusing to mix these aspects together and each of these as-

pects may require a particular mode of representation.
Check-rule It would be possible to do an experimental study based on two different

interfaces
Issues There are a number of issues in defining how to present the different parts

of the OLM and what is an adequate representation.
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Requirement 5.7 The OLM user interface provides mechanisms supporting negotiation with
the learner about the beliefs stored in the LM.

Supports Accountability of the learner model on the face of the learner, as well as its
accuracy, helped by the learner. It also supports metacognition.

Because The system will need to provide evidence justifying the beliefs in the
learner model, and vice versa, the learner will need to justify their claims
by providing their own evidence. In addition, negotiating the system be-
liefs, as stored in the learner model, may encourage learners to think more
deeply about the nature of domain knowledge and their comprehension of
it.

Check-rule The existence of the facilities for negotiation should be complemented with
empirical studies of their effect on the learner model accuracy and trust-
worthiness, as well as the level of learner engagement achieved by the ne-
gotiation and its effects.

Issues Negotiation is a complex activity, which demands some sort of natural di-
alogue structure, even if not carried out in natural language. There is also
the issue of who is going to have the last word, and the consequences of it.

Requirement 5.8 OLM user interface may hide some of the beliefs found in the LM.
Supports Preserving the "face" of learners and preventing overload.
Because Too much “honesty” might be depressing/demotivating.
Check-rule Experimental study based on two different interfaces.
Issues Research problem: this is a serious and difficult issue - lots of problems

in deciding, in a principled way, what to hide. Also the hiding must be
adaptive, but how?
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C.8 Related to Communication and Interfaces

Requirement 5.9 The LM information helps initialising some properties of exercises for the
TC and DM. For instance, the LM will help to derive estimates of the ap-
propriateness of the exercise for the learner.

Supports Selection of the next task (sequence of tasks) by the TC or DM that might
be offered to the learner.

Because The student may need a particular trajectory for her learning.
Check-rule Proof by existence.
Issues Decisions about choice of metadata in exercises.

Requirement 5.10 Self-assessment can be used to provide input to LM at various stages.
Supports Initialising the learner model.
Because The student should notice the adaptivity as an advantage.
Check-rule Small lab experimental design.
Issues The student’s attitudes and preferences may change during her learning.

By asking too many questions the students may feel disturbed.

Requirement 5.11 The SM provides the DM with values of student situation. for guidance
and encouragement (autonomy and approval).

Supports Adapting the dialogue? generation to the learner.
Because

• We need to communicate with learners in different ways to respond
to their affective needs, e.g. less confident students may need more
encouragement (i.e. more explicit approval).

• We need to communicate with learners in different ways to respond
to their cognitive needs, e.g. students achieving less may need more
structured and detailed guidance (i.e. less autonomy).

Check-rule Sensitivity study to show that the recommendations of values for auton-
omy and approval change according to the factor values in different situa-
tions.

Issues Ratings of possible actions and strategies in terms of levels of autonomy
and approval values.
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C.9 Natural-language enhanced dialogue

Requirement 6.2 DM needs access to the LM and SM information for realising the local tu-
torial dialogue.

Supports The generation of student-adaptive and situation-adaptive hints.
Because Dialogue has to take the student’s prior performance and situation into

account.
Check-rule Test how student-adaptive and situation-adaptive dialogue affects student

motivation and learning gains
Issues

• Definition of relevant information.

• Mapping the values of the LM/SM to appropriate dialogue strategies
and their corresponding/appropriate NL verbalisations.

Requirement 6.5 NL-Dialogue subsystem interfaces with and informs the LM and SM and
the exercise component.

Supports Proper update of information about the learner’s progress, actions, goals.
Because Interactions, progress, interpretable judgements, etc. take place during di-

alogue.
Check-rule A small scale pilot study using qualitative methods could be used to check

that the LM is being maintained in a plausibly accurate and timely manner.
Issues

• Determine exactly which information is available and can be passed.

• It is highly likely that there will be inaccuracies.

• LEACTIVEMATH has to function properly also without a DM which
produces English only.
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C.10 Inspection of OLM through NL Dialogue

Requirement 6.6 Communication about LM through natural-language enhanced dialogue.
Supports Student’s inspection and modification of the learner model.
Because NL-enhanced inspection of LM might be more effective than without NL-

enhanced dialogue.
Check-rule Test how NL dialogue can be more effective than LM inspection without

dialogue.
Issues

• Pointing may be more effective than natural language.

• From the NLU point of view, lots of complexities involved in using
NL dialogue to help LEACTIVEMATH to diagnose the student’s state
of knowledge or expertise. May require the capability to reason about
how the OLM came up with its values in the first place.

• Need corpus study to inform the design of such as learner model
NL-enhanced dialogue component, and to determine the form of di-
alogue that we can realistically support.

• The diverse content of the learner model will need a wider range of
dialogue strategies than normally considered within ITS.

• Strategy selection given dialogue context and learner model.
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C.11 Exercises

Requirement 7.3 Feedback has to be presented.
Supports Supports discovery of errors.
Because Empirical evidence.
Check-rule Check with students and/or authors whether the feedback is suitable.
Issues

• Diagnosis is a hard issue in general.

• Different types of feedback may be necessary.

• DM needs to cope with the information underlying the feedback as
well.

Requirement 7.4 Diagnosis of student’s input in exercises.
Supports Provision of elaborate feedback and tutorial dialogue.
Because The correctness has to be judged.
Check-rule Few tests comparing the system’s diagnosis with teacher’s diagnosis.
Issues

• Requires input from authors/teachers on frequent mistakes and pos-
sible solutions.

• A correct diagnosis may be very difficult to compute. Therefore, it
simplifies diagnosis, if the learner is asked to concretise her problem
or to make more detailed steps.

• Relevance of steps can only be judged approximately in some cases.

Requirement 7.5 A history of a student’s activities in an exercise has to be stored.
Supports Diagnosis and feedback.
Because
Check-rule Test which of this information is actually needed.
Issues The local history has to be stored separately in order to be accessible to

different components of the system.
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C.12 Exercise Repository

Requirement 7.7 The repository is accessible and searchable by computational systems. In
particular, it is well integrated with LEACTIVEMATH.

Supports Usability and interoperability of the system.
Because Availability of the exercises to the TC and DM to integrate them into inter-

active courses and suggestions.
Check-rule Check whether all exercises can be selected in tutorial choices of LEAC-

TIVEMATH.
Issues

• Exercises need to be encoded in the OMDoc exercise format with Ac-
tiveMath extensions (structure and metadata).

• Need to display the copyright statement attached to each exercise.

• Useful to have a single naming scheme for mathematical notions.

• The repository should distinguish between a user who directly access
and a user who access repository via LEACTIVEMATH.

• Service approach may be well-suited.

Requirement 7.8 The exercise subsystem communicates with the LM.
Supports

• Adaption of exercises and feedback in exercises.

• Learner model update.

Because Both directions of communication are needed.
Check-rule Proof by existence.
Issues Determine the relevant information on both sides.
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