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Abstract : Using the TALC geometric tutor, a student can wbta diagnosis about the
correctness of his construction of a figure witbpect to a teacher's specification. In the case his
construction is incorrect, our aim is to improve #xplanations given by TALC using a student
(mis)conceptions model. Since the knowledge reptasen in TALC uses first-order logic,
more precisely Horn clauses, our purpose is tandedind to experiment with the use of Inductive
Logic Programming (ILP) systems as a 'black boxoiider to generate such geometric student
model, using a corpus from didactic research apergendicular symmetry.

Introduction

The context of this paper is a tutor for the camdton of geometric figures whose name is TALC
(Desmoulins, 1994), a French acronym for Tutor ofically Aided Construction. The aim of this tuterto
check the correctness of a student constructiom nggpect to a teacher's specification. TALC islamgnted in
Prolog I+ and THINK C on the Macintosh platfornh.uses Cabri-Géomeétre (Bellemain & Laborde, 19953 a
server to construct figures. The diagnosis detezmifithe didactic contract (Desmoulins, 1993) wdrich the
student and the teacher have come to an agreenignieach other through the system, is satisfiecchEa
component of the contract could be considereddeggeee of freedom that the system provides thénezache
teacher's own text, the knowledge required to stiheeproblem, and the construction tools availdhjethe
system. The didactic contract is globally definsihg first-order logic by TIGIO S = F, where F and S are,
respectively, the translation of the student camsibn and the teacher specification, and where B@n
axiomatic theory that defines the level of studaitity required.

Three possible cases can be singled out of thendsg the construction is correct, the construci®
inadequate, and the construction is a particulse ©d the specification. In the last two caseqrder to verify
the expression TIGO S - F, one of its components can be modified: either student creates another
construction or the teacher changes his text ds éato question the knowledge he assumed the stude
possesses. Before modifying any component of tiiract, it is preferable to generate explanationsrder
that the student accepts the diagnosis. A way temggée such explanations is to create a modeleoétiident's
geometrical (mis)conceptions. This model can dfulidor adapting explanations for each studentrédwer,
it provides the teacher with a more precise idethefstudent's (mis)conceptions and a base togetiate the
contract. Based on the didactic hypothesis thatsiudent's reasoning is consistent, our purpose ise
machine learning techniques to generate this model.

In the TALC system, generating a model of what shalent believes in consists in looking for a tlyeor
TAG such that TAGIO S = F, for each couple (F, S) such that T8-S < F, i.e., the construction is not
correct. The representation of the geometric kedgé using Horn clauses within TALC leads us to the
Inductive Logic Programming (ILP) paradigm.

This paper is organised as follows: Section 1gmissthe principles and characteristics of Indectiogic
Programming and its utilisation for Student Modwalli Section 2 explains how ILP could be used ttegate in
TALC a model of what the student believes in. Hinalve describe in section 3 the experimentationmazle
with two systems that respond to TALC requireme#e present our first results on a body of miseptions
about perpendicular symmetry that stems from didaesearch.

1. Using Inductive Logic Programming for Student Malelling

According to (Nicaud & Vivet, 1988), the more commaethods for student modelling in Intelligent



Tutoring Systems are :

» theoverlay modelWhere the student knowledge is a subset of thehées knowledge. The diagnosis
is generated by comparing the respective knowleafgthe student and teacher. The method is
incomplete because only the lack of knowledge canmodelled. Both the systems GUIDON
(Clancey, 1982) and WEST (Burton & Brown, 1982) sgeh a student model.

« the perturbation modelvhere the expert knowledge is first encoded and tt@mpleted with the
possible misconceptions of the student. These mégqations (or bugs) represent perturbations of the
expert model and are collected from observationkssandies of student behaviour in a library. Many
systems like PROUST (Johnson, 1983) or GEOMETRY DBT(Andersoret al, 1985) use bug
libraries.

These two ways of student modelling start from aezti model, even if the knowledge representatiwh a
the perturbation method are different. On the ottand, some methods try to model behaviour, dpant its
correctness. Those methods generally use maatmneithg techniques, such as theonstructive diagnosis
the ACM system (Ohlsson & Langley, 1988]. Startirgm a decomposition of the problem, a set of giuas
is defined. The diagnosis is reconstructive indbese that it tries to describe observations thithaid of these
primitives. In the ACM case, the student modellgmpsists in looking for 'solution paths' betwelea problem
terms and its result in a search space createdswith primitives. This path construction is credigdearning
from examples. Theeconstructive diagnosisan be generalised by Inductive Logic Programming.

1.1. What is Inductive Logic Programming?

Inductive Logic Programming (ILP) can be definedths intersection of Machine Learning and Logic
Programming research areas. Thus the aim of Ilt® lisarn a definition (called hypothesis) of targencepts
from observations, where the knowledge represematinguage is Horn clauses. The set of obsenstion
consists of positive exampldst and negative exampld€s™ of these concepts. These examples usually are
ground facts. The knowledge relative to the domahrere the machine learning takes place is called th
background knowledgBK. The set of Horn clauses represen@iq is either ground facts or non-ground rules.

The principle of Inductive Logic Programming is thas follows (Muggleton & De Raedt, 1994). Given a
background knowledgBK, a set of positive exampl&", a set of negative examplEs, find a hypothesis
such that the following conditions hold :

completeness BK,H |0 E*
consistency BK,H If E-

The completeness condition requires that the hysighd covers all positive examples. The consistency
condition requires thaitl does not cover any negative example. A third toralc but necessary condition,
BK If E*, has to be added to the previous ones. It chéwkshiackground knowledge does not yet hold any
complete concept definition.

Taken as a whole, the induction process can beedeag a search problem. Induction consists inoeixg
a search space containing all possible hypothesasler to find one verifying completeness and =tescy.

1.2. ILP Systems Characterisation

These general principles are currently implemeitechany ILP systems. However, they are significantl
different the one from the others. In order to cekome well-adapted ILP systems to student maodgllive
first extracted the main features characterisinchedP system. These characteristics concern tlhehiad
machine learning processes and the restrictiortsotinthe representation language and the searclke.sphey
are the following :

« incremental or empirical learning : in a non grmental (empirical) ILP, the examples are given at
the beginning and are not modified afterward, altoin incremental ILP, they are given one by one
by the user;

« interactive learning : in interactive ILP, thessym is allowed to ask questions to the user @@alle
"oracle") about the intended interpretation of a@araple or a clause. Obviously, interactiveness
implies incrementality but can be involved in sopi@ases of empirical learning like theory revision;

« single or multiple predicate learning : in singieedicate learning, the observations are exangfles
only one concept. The aim of multiple predicateriéay is to learn a set of possibly interrelated
predicate definitions;

« theory revision : the theory revision usually ssts in inductive learning starting from an iritia
approximation of the concept to induce.

« predicates invention: the ILP system is ablenteent new predicate symbols, when the vocabulary of



the background knowledge is insufficient to consthypothesis;

« intentional or extensional background knowledge intentional background knowledge can contain
both ground facts and non-ground clause, whereagtansional one is represented with ground facts
only;

» predicate instantiation mode : considering theg tlauses are logic programs, instantiation mode
allows the designations of predicate argumenta@st ior output.

 predicate typing: it constrains predicate arguisién take values only in a predefined set. Bo#s¢h
two previous characteristics are usually used $trice the search space and come from the paradigm
of Logic Programs Synthesis.

To conclude this section, we note that one of tlgominterest of ILP for student modelling is to &fale to
manage a set of example from the student behawuathiput concern about correctness (with respedhéo
reference knowledge). Another characteristic, ma@is invention, is important because the studesdein
could not only be expressed with the predicateahefeference model.

The first proposition to use ILP in student modglis from Kawai (Kawaet al, 1986). He postulate that
the student model can be represented with a sétoafi clauses. This proposition was applied in aemo
concrete way in the SARAH system (Siou, 1994), ideo to re-educate aphasia. In this framework, the
advantage of ILP is that it can reconstruct eadiasic person's own language model. These approaches
nowadays the only ones concerned with student riodetith ILP.

2. Inductive Logic Programming with respect to TALC

In this section, we first present how Inductive looBrogramming could be used with respect to TAME:
instantiate the different components of an ILPesysin TALC. We then present an example of a studetel
we want to automatically learn with an ILP system.

2.1. Using ILP in TALC

In order to use ILP in the context of TALC, we needlescribe how the different components of TALE a
connected with the following components of an ILytem : the knowledge representation language, the
observations of the target concepts and the baokgriknowledge.

As said in the introduction, TALC provides threadiof diagnosis : the figure is correct, the figisea
particular case and the figure is inadequate (sgewenetrical properties or objects are missing}thls paper,
we only deal with the case where some propertiesrassing in the student construction. Logicaltyneans
that TIG / F = S The knowledge representation language involve@AhC is LDL (Logical Description
Language) in which the teacher specification amdstiudent construction are translated before beongpared.
We do not need to transform it as it is a firstesrthnguage (without function symbols).

Defining the observations of the target conceptoisimmediate. Our problem is to find a theory TA&h
that TAG /7 F = S, for each couple <figure, specification> (F,S).ténms of machine learning, the positive
examples would be the set of expressiens S. But it is unnecessary to look for a model of Wele student
construction. Indeed, considering that a LDL foranigl a conjunction of properties (S 3 [S sp ... Osp), the
diagnosis of TALC gives us the set of non provedpprtiess; within F, i.e. such thalTlG / F =5.. For
incorrect constructions F, the properties of S ddhken be divided in two kinds : proved and nonvptbones.
Then we can take as positive examples every forfuag such that the property & not proved (notice that
there is no negative example because TALC justidersthe figures that the student has declaregc)r

For example, if the following propertiesymmetric([a b],l,[a' b) and square(a,p2,p3,p4) are not proved
within F, i.e.TIG / F = symmetric([a b],l,[a' b]) andTIG / F = square(q,p2,p3.p4), each of the formulae
F = symmetric([a b],l,[a' b])andF = square(f,p2,p3,p4) are positive examples to automatically induce both
the target conceptsymmetricandsquare

Unfortunately, ILP systems do not accept such fdamwas examples but only literals. In order totFiis
problem, we could consider that the formula F befomo the background knowledge (via the deduction
theorem). The trouble is that the system losesnipdication between F and S and is only able torleatheory
covering a single couple (F,S). Consequently, waptd standard solution which consists of renanenery
object of the formul& = § with different and unique names for each coupl&)H;or example, if the property
symmetric(s,l,s'pf the specification S are non proved in both ¢bastructions F1 and F2, then the positive
examples could be respectivelymmetric(s1,l1,s1andsymmetric(s2,l12,s2)The corresponding constructions
F1 and F2 are renamed using the same substitutbad@ded to the background knowledge.



The background knowledd®&K is of course composed by the theory TIG and, asvsipreviously, by the
renamed properties of the construction F.

Finally, we can identify the needs of TALC with pest to an ILP system from the characteristics
enumerated in section 1.2.

Inductive Logic Programming process needs negativamples in order to constrain and guide the
hypotheses search. Because such negative examplesta available from TALC, we think about askitig
user to validate (for positive examples) or inval&l (for negative examples) some properties subdnliy the
system about a current construction. Interactiveriesthen required. On the other hand, as we difine
previously, the learning process could be empirjafter, for example, each set of exercises) anteinental
(after every diagnosis) equally. Only the problefnegative examples generation would then restiat
choice.

Because the TIG theory is a part of the backgrokmulvledge, we need to describe it intentionallye Th
search space can also be restricted by typing geicaleobjects with ILP systems which provide this
characteristic, but it is not necessary to havealipate instantiation mode. Therefore, predicaterntion,
multiple predicate learning and theory revision Idobe useful but not necessarily essential. Only
experimentation will determine it.

2.2. Example of student modelling with ILP

In their didactic research, Grenier (Grenier, 1988ncerning traditional paper and pencil work, madhri
(Tahri, 1993), concerning work with computer softejaidentified a set of correct and incorrect shide
conceptions related to the perpendicular symmeftry segment across a line. These conceptions krearg
examples of what could be automatically learnedh ait ILP system.

For example, the following conceptions are incdrrec

« the 'parallelism' conception where the studemffueges perpendicular symmetry with the parallelism
(figure 1.A).

« the 'perceptibly perpendicular-to-axis distantaasfer' conception where the student builds a-sem
global construction (some objects of the constanctre not linked to some others). In the case of
figure 1.B, only the endpoint A' of the segment BY is correctly located at the intersection oé th
circle and the line (A A"). The endpoint B' is ptalcperceptibly on a line perpendicular to the @&s

AX
A

A _—

/
BI

B I

/
(A) (B)

Figure 1. Incorrect concepts of perpendicular symmetric.

The aim of the exercise is to verify the comprefmmdy the student of the concept of perpendicular
symmetry. We try here to obtain a definition of taeget concepgymmetric(S1,DR,S2yhich means that "the
segment S2 is the perpendicular symmetric of tigens@it S1 across the line DR". A positive examplebfth
the previous figures is thaymmetric([A B],Ax,[A' B']).

From these constructions and from a theory TIG irequto solve this exercise, we would like for &Pl
system to generate the following theory TA@lated to the ‘parallelism’' concept :

TAG = TIG O symmetric([a b],d,[a’' b0 parallel([a b],[a" b"])



perpendicular([a a',d) perpendicular([b b7,d)
distance(a,d,d1) distance(a',d,d2) equal(d1,d2)

In this case, we suppose that each predicate iaddlvthe definition of TAG still exists in the background
knowledge.
The theory TAG is related to the 'perceptible’ conception desdridgove :

TAG, = TIG [7symmetric([a b],d,[a' b'])/7 distance(b,d,d3) distance(b',d,d4)
almost-equal(d3,d4)
perpendicular([a a',d) perpendicular([b b"1,d)
distance(a,d,d1) distance(a',d,d2) equal(d1,d2)

Generating the theory TAfheeds the predicate invention technique in ordeepresent the fact that the
distances between the axis Ax and each of the émdpB and B' are approximately equal, i.e. thedjmate
almost-equal(d3,d4)

3. Experimentation

In this section, we describe an experimentatiorh WitP systems. We first present the two systems we
select. We then make precise how the set of exanypdes defined. Finally, we present the first ressalitained
using these two systems on the concept of perpeladisymmetry.

3.1. Selected ILP systems.

In order to use an ILP system as a 'black boximade a two-steps selection.

First we discard some systems because they wekailadzle or not sufficiently documented, or becawse
did not have the required interpreter or develognezvironment. After this selection, we were lefthathe
four following systems: FOIL (Quinlan, 1990), FOQRazzani & Kibbler, 1992), GOLEM (Muggleton & Feng,
1992) and CLINT (De Raedt, 1991), from twenty aaflié candidates (or claimed available).

Secondly we compared them following the charadiesisdescribed in 2.1 with respect to TALC re-
quirements. Interactive and incremental learningagainly consistent with TALC requirements anddeo
CLINT as the best choice. We also selected the F&@Gtem and we fixed the problem of negative exampl
by automatically generating them before each indngbrocess. A brief description and a comparisbthese
four systems is presented in (Van Labeke, 1995).

3.2. Reference Body.

The examples come from the symmetric misconcepttundied by Grenier and Tahri and are described in
section 2.2. We redefined the original texts inLTCAby specifying, for each of them, the teacherctjmation
S, the related geometrical theory TIG and the studenstruction F.

Induction of these concepts with ILP was carriet smparately from the diagnosis in TALC: we recede
the LDL (Logical Description Language) translatiafsthe components of each exercise (theory TIGtart
S) and the corresponding student construction rgidt) and put them into each ILP system after speesied
adaptations (syntactical modifications, constaut eariable renaming, ...).

Although it is not its main goal, TALC can be usedpropose to the students problems of geometrical
construction. In this way, student understandifigoperpendicular symmetric concepts could be checked
However, the actual TALC diagnosis cannot referatty property but only to CDL properties (Classroom
Description Language, the texts language), whighaaite basic (membership, parallelism, equality, .In
order to give to the teacher the ability to exptagh-level concepts, we suggest allowing him tdemnis own
macro-definitions

Formally, we define what a macro-definition is iretsame manner as what a procedure is in a progrgmm
language: on the one hand we must define the sawarita macro-definition declaration, and in thiees hand
the semantics of the utilisation of a macro-deifimit A declaration of a macro-definition createsew
predicate (i.e. clarifies its name and its formatgmeters) and associates it with a CDL text. Alisation of a
macro-definition replaces the predicate by the G&it associated to it , binding the formal paramseby the
effective ones.



For example, the macro-definitions which would defihe midpoint of two points and the perpendicular
symmetry of a segment across a line could be destnising CDL language as follo{f&\ B] represents the
segment B, (A B)the lineA B, |A B the distance betweénandB and//is the perpendicular relation) :

MIDPOINT(l, A, B) := I ZJ[AB],|IA|=]IB|.
SYMMETRIC( [A B], L, [A" B) := MIDPOINT(I, A, A)MIDPOINT(J, B, B,
1L, 30L, (AA)IL, (B B)LL

A CDL text using this macro-definitions and destrithe symmetric of a right triangle (A B C), cdlie
the following:
sl =[AB], s2 =[B C], s3 =[AC], s1 !- S3, lin&X),
SYMMETRIC(s1, Ax, s11), SYMMETRIC(s2, Ax, s22) MEYTRIC(s3, AX, s33).

Since our corpus is about symmetry and obviousdyctirresponding predicate is not a CDL one, we teed
use such macro-definitions. Because TALC does abpyovide this feature, it is then necessary taufate it.
For this purpose, we use a unique text only coirtgithe definition of the target concept, i.e. gegpendicular
symmetry of a segment across a line. Thus thisitisedf, with the following specification, is a nmaedefinition
of the target conce@@YMMETRIC([A B], L, [A' BY):

| JAAYL LA =|IA), JZJ[BBY,|IB|=[JB"|, 1L, 0L, (AAYDIL, (BB)L

In the same way, the construction done by the studeconsidered as a positive example of the qance
SYMMETRIC. Once more this underlines the need faldiional knowledge as soon as additional
functionalities are built.

3.2. Experimental Results

The first experiments focused on the concept aflfdism' (see figure 1.A) because the expectadlre
were relatively simple. As shown in the previowest®on, the target predicate related to the concépt
perpendicular symmetry cannot be expressed in TAlt€introduction in the ILP systems required aisiéfine
both the predicate arguments and types. SinceDRhepredicate describing a segment is as follows :

segnent (s1, pl, p2,1) the segment s1 is defined by its endpoints p1 2nahg by its
directed line |

we chose to define the target predicate with tigenemts and the symmetric axis identifiers:

symetric(sl, ax, s2) the segment s2 is symmetric to the segment slresihect to the axis
ax

The experiments using the incremental learningesySELINT confirm the limits already observed during
its evaluation: whatever way we modify the backupeb knowledge or the definition of the target pcati, the
induction process requires too much time and iblent deal with more than the first submitted eghen In
this case, the process gives the following mininyglothesis:

synmetric(sl, ax, s2) :- segnent(sl,pl,p2,11), segnent(s2,p3,p4,12), line(ax).

In our opinion, these problems come from CLINT diion of high-order rules used in restricting gearch
space and from the recursive definition of the &&ms.

CLINT advantage is to be incremental and interactNevertheless, with the current documentatiorere/h
only a formal description of these high-order rukegiven but no practical method to adapt themdncrete
problems, the use of CLINT as a black box did mgtesmr well adapted to our purpose.

We focus then on FOCL, which is non-incrementalfddimnately all negative examples should be exihici
given. This last limitation was overcome by genamthem on each positive example independentlguRe
depend on learning parameters and on the use bfbitigground knowledge. The nearest definition watard
to the didactic results is the following:

symmetric(sl, ax, s2) :- segnent(sl, pl,p2,11), segnent(s2,p3,p4,12), par(l1,12),
perp(l 3, ax).

Here we really obtain the property that s1 and =2t&o segments and that |1 and 12, their respectiv
support lines, are parallel. However, there isnfiormation about the rest, i.e., the perpendidtydretween the
axis Ax and both the lines (A A") and (B B'). Thalyliteral about perpendicularifyerp(I3,ax)is geometrically
insufficient. According to Tahri's classificatiaihjs hypothesis is then acceptable.



Even if FOCL needs all negative examples before Ifaening process, this could be overcome in an
interactive system by first generating all possibdgative examples using the Closed Word Assumgatith
then asking the student whether each of them id walnot.

Conclusion

Our purpose was to define and to experiment withuge of Inductive Logic Programming systems askbl
boxes' in order to generate a model of studenétseln geometry.

We first selected, among ILP systems referencetthenliterature, the ones which were really usabée,
were available, sufficiently documented and effitie We also defined a qualitative characterisatériLP
systems that we used to choose suitable systemthdorequirements of TALC. Our chief discriminagtin
characteristic is the necessity to describe backygtdheory intentionally, i.e., with both facts andes.

Then we performed experiments based on a body afmpbes chosen from didactic research about
construction of the perpendicular symmetry of ansexgt. In particular, we tried to use ILP systeméntduce
the incorrect concept of ‘parallelism'. The resuf the FOCL system are adequate enough. Howéver,
CLINT system could not overcome limitations duehe background knowledge size and the recursiva fufr
the axioms.

One of the problems we had to tackle was that elesnpf the target concepts were in the form of
implication formulae, although ILP systems requinem as facts. We fixed this in a classical marmer
introducing the left part of the implication aset ef facts in the background knowledge and byméng every
constants, in order to preserve the connectiondmtvthese facts and the related observationsighepart of
the implication).

This research revealed that some insufficienciegbénTALC system must be rectified in order to amun
large-scale experimentation about other incorreatepts(in vitro or in vivo). First, we need to obtain ara
complete diagnosis. Secondly, we need to allowt¢laeher to define his own macro-definitions, inesrtb
overcome the elementary expressiveness of the Gibhitiyes. These additional functionalities araremtly
implemented.

In a more practical view, the ILP systems requinmagative examples necessitate to ask student #mut
validity of potential ones. Without a doubt, ti$eractivity is not necessary because an ILP gyste recently
found requires only positive examples : LILP (Markd995). More generally, our point of view abahis
'black box' experimentation is that it is more abi¢ to design an adapted ILP component. Indead, o
requirements are really restricted compared withtted possibilities that an ILP system provides.any
libraries of ILP techniques exist and could be ukfr that aim.

In conclusion, for the long term, an important &ssa how to exploit the induced model. Firstlye th
correctness of the induced TAG theory should balbdished. If the model is geometrically correctr xample
when the student uses geometrical axioms or theotbat the teacher did not specify), it is posstblepdate
the TIG theory with these axioms (with teacher agrent). On the contrary, it seems to be intergstin
automatically generate a counter-example whichaallpointing out the incorrectness of student urtdading.
Broadly speaking, we could provide the teacher @ twadescribe system reactions following misconiogst
extracted from TAG analysis, i.e., to propose te #iudent an activity following conditions foundedthe
model.
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